
cover story

carrier and -110 dBc/Hz offset 100 kHz from the carrier. Maximum frequency pulling is 14 MHz for a 1.75:1 VSWR load while maximum frequency pushing is 7 MHz/V. The VCO is supplied in a surface-mount package with slotted metal cover measuring just 0.50

6. Harmonic suppression in a DCFO oscillator is specified as -10 dBc, although measured performance clearly exceeds the specification.

 \times 0.50 \times 0.25 in. Both the DCFO-35015 and the DCMO-190410 have an operating temperature range of -30 to +75°C.

In between, the model DCMO-150320 tunes from 1500 to 3200 MHz via tuning voltages of 0.5 to 20.0 V and tuning sensitivity of 100 to 200 MHz/V. The oscillator delivers at least -2 dBm output power with typical phase noise of -92 dBc/Hz offset 10 kHz from the carrier and -112 dBc/Hz offset 100 kHz from the carrier. With a 1.75:1 VSWR load, frequency pulling is a maximum of 12 MHz; the maximum frequency pushing is 6 MHz/V. The company also offers model DCMO-60170 with minimum output power of +3 dBm from 600 to 1700 MHz and phase noise of -99 dBc/Hz offset 10 kHz from the carrier and -120 dBc/Hz offset 100 kHz from the carrier.

In short, these VCOs combine the much desired wide tuning ranges required for multimode operation in next-generation cellular-communications handsets and infrastructure equipment with the low phase noise of much narrower-band sources. The combination should allow designers to make use of a single VCO where two or more were used in the past. Synergy Microwave Corp., 201 McLean Blvd., Paterson, NJ 07504; (973) 881-8800, FAX: (973) 881-8361, e-mail: sales@synergymwave.com, Internet: www.synergymwave.com.

REFERENCES

 Ulrich L. Rohde and D.P. Newkirk, RF/Microwave Circuit Design for Wireless Applications, Wiley, New York, 2000.

 A.K. Poddar, S.K. Koul, and B. Bhat, "Millimeter Wave Evanescent Mode Gunn Diode Oscillator in Suspended Stripline Configuration," 22nd International Conference on Infrared and Millimeter Waves, pp. 265-266, July 1997.