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1 Introduction 
  
The need for oscillators has been in existence for a long time. The first time it became an 
important issue was when Maxwell’s Equations were to be experimentally proven.  
Heinrich Hertz made the first known oscillator.  He used a dipole as the resonator and a 
spark gap generator as the oscillator circuit as shown in Figure 1-1. 
  

 
Figure 1-1   Original dipole made by Heinrich Hertz in 1887 using balls at the end to form a capacitive 
load (Deutsches Museum, Munich). 
  
The spark gap oscillator changes AC or DC power into a spark which is energy rich and 
wide band. The dipole then takes the energy at the resonant frequency, radiated it and 
caused an electromagnetic field.  Other discharges such as lightning with short pulse 
duration generates RF power from a few tens of KHz to hundreds of MHz. 

 
Figure 1-2   Dipole formed by two conical resonators with spark gap (1914). 

  

 
 

Figure 1-3   Dipole oscillator after Ludenia placed in a parabolic mirror to increase efficiency (1929). 
  
Figures 1-2 and 1-3 show additional examples of early oscillators.  The pictures in this 
section are taken from [1]. 
  
Today, oscillators are used in test and measurement equipment and communication 
equipment.  Given the large number of two-way radios and handies (cellphones) in use, 
they are the largest group of users.  In this paper high performance and high volume 
applications are considered, but not the mass-market applications.  I will consider 
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external resonators rather than monolithic resonators because high-quality phase noise 
requirements have only been met using external resonators thus far. 
  
In these applications, the oscillators have to meet a variety of specifications, which affect 
the quality of operation of the system.  An important feature is the cleanliness of the 
oscillator (low phase noise) and its freedom of spurious signals and noise.  While the 
oscillator is almost always used as a voltage-controlled oscillator (VCO) in a frequency 
synthesizer system, its free-running noise performance outside the loop is still extremely 
important and solely determined by the oscillator. 
 
An oscillator is a circuit that consists of an amplifier and a resonator.  The feedback 
circuit takes a portion of the energy from the output of the amplifier and feeds it into the 
resonator to compensate its losses.  The amplitude of the oscillator depends on the DC 
input power and the circuit itself. A small portion of the energy is used to sustain 
oscillation.  Most of the RF power is available to be withdrawn at the output to be further 
amplified and used depending on the application.  The frequency of the oscillator is 
largely determined by the resonator. 
 
The classic papers deal with the maximum output power and noise properties of an 
oscillator as they were first measured and then optimized by trial and error.  Even this did 
not always provide the best possible answer.  The purpose of this work is to give, for the 
first time, a new, simple, complete, but efficient way to “synthesize” the design of a high 
performance, low noise oscillator. A general solution will be discussed and validation for 
the popular Colpitts/Clapp oscillator will be found.  This approach will be valid for all 
types of oscillators [2-9]. 
  
An intensive literature search has been done to cover all the relevant previously published 
discussions.  
 
The first approach to understand the noise properties of an oscillator, was done by Leeson 
[70] in 1966.  This classic paper is still an extraordinarily good design guide.  The 
advantage of this approach is the fact that it is easy to understand and leads to a good 
approximation of the phase noise.  The drawback of this approach is the fact that the 
values for the flicker noise contribution, which is a necessary input to the equation, the 
RF output power, the loaded Q, and the noise factor of the amplifier under large-signal 
conditions, are not known.  Other classic papers, such as Kurokawa [82], indicate where 
the operating point for best phase noise lies, but the value of the phase noise as such is 
not known [17].  The next breakthrough in oscillator noise analysis was developed by 
Rizzoli [77-79].  It is based on a noise correlation matrix and incorporates the various 
noise sources from the active device.  Commercial simulation programs use a fixed 
topology for the transistor models.  Available are the Gummel-Poon bipolar transistor 
model, an HBT model, the various gallium arsenide FET-based models, as well as MOS 
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and JFET models.  The implementation of the noise sources for these semiconductors are 
shown in the user’s manual of the simulator, specifically the model library. 
 
The latest approach is a general noise theory for arbitrary circuits as shown by Lee and 
Hajimiri [64-67].  Their noise model is based on the time varying properties of the 
current waveform of the oscillator and the phase noise analysis is based on the effect of 
noise impulse on a periodic signal. 
 
If an impulse is injected into the tuned circuit at the peak of the signal, it will cause 
maximum amplitude modulation and no phase modulation.  If an impulse is injected at 
the zero crossing of the signal, there will be no amplitude modulation but maximum 
phase modulation.  If noise impulses are injected between zero crossing and the peak, 
there will be components of both phase and amplitude modulation.  Based on this theory 
and the intention to obtain the best phase noise, a special technique has to be adopted to 
make sure that any noise impulse occurs at the peak of the output voltage rather than any 
other point.  Lee and Hajimiri introduced an impulse sensitivity function (ISF), which is 
different for each oscillator topology.  This ISF is a dimensionless function periodic in 
2π.  It has its largest value when the most phase modulation occurs and has the smallest 
value when only amplitude modulation occurs.  
 
This approach appears to be purely mathematical.  It lacks practicality.  The calculation 
of the ISF is tedious and depends upon the oscillator topology.  The flicker noise 
conversion is not clearly defined.  Also, there is no general mathematical equation that 
can be written about the phase noise in terms of components of the circuit, which can be 
differentiated to obtain both maximum power and best noise performance.  Recent 
publications by Tom Lee have shown that the noise analysis for a given topology can be 
expressed and give good results once all the data is known, but does not lead to exact 
design rules [107].  Similar to the Leeson equation, it suffers from the fact that the actual 
noise performance of the device, the loaded Q and the output power, are not known a 
priori.  As a matter of fact, some of the published oscillators by Lee and Hajimiri could 
be “optimized.”  This means that the published oscillator circuit did not have the best 
possible phase noise.  By using the optimizer of a commercial harmonic-balance 
program, the phase noise could be improved significantly.  Of course, a good direct 
synthesis procedure would have given the correct answer immediately. 
 
The oscillators considered in this work are based on commercially available silicon 
bipolar transistors and silicon germanium transistors.  As most designers and companies 
do not have elaborate and expensive equipment for parameter extraction (to obtain 
accurate nonlinear models), this concept of synthesis is based on using available data 
from the manufacturer as well as measurements of large-signal S-parameters using a 
network analyzer.  Modern microwave transistors are very well characterized by the 
manufacturer up to approximately 6 GHz.  Noise data, as well as a SPICE-type Gummel-
Poon model data set are available.   
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There are several oscillator topologies. For the purpose of validating the general synthesis 
procedure, initially, a simple transistor circuit (Colpitts/Clapp oscillator) is used as the 
basis of discussion [2-8].  The oscillator itself can be described as a one-port device 
supplying a negative resistance to the tuned circuit, which is ideal to determine the best 
feedback network.  Alternatively, it can be described as a two-port device using a 
resonator and an amplifier and allows us to calculate the complete noise analysis.  It will 
be shown that both cases provide the same answer.   The second case gives more insight 
into the phase noise calculation.  For the first time, this new mathematical approach will 
show a step-by-step procedure using large-signal conditions on how to design an 
oscillator with good output power (high efficiency) and phase noise.  As a third case, the 
values for Pout, Ql, and F required for the Leeson equation will be numerically 
determined.  All three cases will give an excellent agreement with the oscillator built 
under these test conditions and its measurements starting from the simple oscillator.  A 
more complex circuit, including all the parasitics, will be used to show the general 
validity of this approach (Appendix C).  
 
Any successful design for microwave oscillators mandates, besides building and 
measuring it, the use and validation with a microwave harmonic-balance simulator. In the 
harmonic-balance analysis method, there are two techniques in use to convert between 
the time-domain nonlinear model and the frequency-domain evaluation of the harmonic 
currents of the linear network.  One technique is the Almost Periodic Discrete Fourier 
Transform technique (APDFT) and the other is the Multi-Dimensional Fast Fourier 
Transform technique (MFFT) using quasi-analytic or analytic derivatives to evaluate the 
Jacobian matrix.  The first one, which has a somewhat random sampling approach, has a 
typical dynamic range of 75 to 80 dB, while the second one offers greater than 180 dB 
dynamic range. 
 
In mixer designs and intermodulation analysis, which includes the calculation of noise in 
oscillator circuits, it is important to be able to accurately predict a small signal in the 
presence of a large signal.  To reliably predict this, the dynamic range (the ratio of a large 
signal to a minimally detectable small signal) needs to be more than 175 dB.  The 
APDFT technique was found to have a dynamic range of 75 dB, while the MFFT, and 
with analytically calculated derivatives, was found to have a dynamic final dynamic 
range of 190 dB.  Given the fact that in noise calculations for oscillators, a noise floor of 
–174 dBm is the lower reference and the reference level can be as high as +20 dBm up to 
190 dB dynamic range is required.  Such a numerically stable approach is definitely 
required [10-13]. 
 
Organization 
 
This work is organized in 14 Sections.   
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Section 1 – the Introduction, describes the purpose of the work and defines the problem.   
 
Section 2 – defines the oscillator, its application, and parameters.  In addition, the history 
of microwave oscillators is briefly discussed and various types of oscillators are 
introduced.   
 
Section 3 – describes the various transistor models and gives insight into their parameters 
and their presentation.  For better understanding, some current examples are shown.   
 
Section 4 – develops the concept of “large-signal S parameters”. The transistor models 
shown in Section 3 are mostly provided in linear form; the large-signal conditions have to 
be determined from the SPICE-type time-domain signal parameters.  A good way of 
describing a transistor under large-signal conditions is the use of “large-signal S-
parameters” which are introduced here.  Examples of measured S-parameters are shown 
[18-53]. 
 
Section 5 – discusses resonators used for the frequency selective circuit of the oscillator. 
The popular resonators are shown and resulting Q factors are discussed. 
 
Section 6 – develops a comprehensive treatment of the oscillator.  Initially, the linear 
theory is shown, which explains the design strategy.  There are two types of oscillator 
configurations that are relevant.  One is the parallel type and the other is the series type.  
For both cases, a numerical design is shown.  The more precise design method of an 
oscillator is an approach which considers large-signal conditions.  Therefore, the start-up 
conditions are described, then the steady-state behavior.  Under large-signal conditions, 
the time-domain behavior has to be considered, as the collector (or drain) current now 
consists of a DC component and harmonically related RF currents.  In order to describe 
this, a normalized drive level is introduced which determines the conducting angle.  As 
the conducting angle becomes narrower, the efficiency increases and the noise improves.  
However, there is a wide range over which the output power is constant, but the noise 
varies widely.   Finding this optimum condition is the objective of Section 8.  This 
section is supported by Appendix A.   
 
Section 7 – is a detailed discussion of noise in oscillators, both linear and nonlinear.  The 
linear section shows how the Leeson model is derived, which is used as the best case 
model.  It contains the loaded Q, the noise factor, and the output power.  These three 
variables determine the phase noise of an oscillator.  The linear example is now useful 
because these three values were practically unknown. An accurate calculation based on 
large-signal S-parameters, specifically S21, is possible for the first time.  Finally, a phase 
noise test setup is shown which is used to validate this large-signal noise theory.  This 
section is supported by Appendix B.   
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Section 8 –is the key contribution of this work.  Section 6 gave a good insight into the 
large-signal operation of the oscillator, including its optimization for power, and 
discussed some phase noise results under these conditions.  As mentioned, the normalized 
drive level x can vary over a broad range with output powers only changing a few dB’s, 
while the phase noise changes drastically.  A change in a few dB of output power 
drastically changes the efficiency, but the goal here is to find the best phase noise 
condition.  After showing that reducing the conducting angle and proving that the phase 
noise gets better, the actual noise calculation and termination of the feedback capacitance 
is shown.  There are three cases: 
 
1. First is the Leeson equation, which contains a need for output power, operating noise 

figure, and loaded Q is tested for its validity.  To do this, the exact calculations for the 
output power, the loaded Q, and the resulting noise factor are presented.  An example 
shows the accuracy of this approach is limited, however, since an ideal transistor 
without parasitics is assumed.   

2. The second approach calculates the noise contribution of a time varying negative 
resistance that cancels the losses.  It will be shown that this is a time average value, 
that the noise calculations can be further improved, and the optimum feedback 
conditions are found. 

3. The third and final approach is based on the loop approach and considers all noise 
contributions. Therefore it is the most accurate way to determine the oscillator’s 
performance. A graphical differentiation of the phase noise equation shows a region 
to obtain the best phase noise. The phase noise increases on either side of this optimal 
point. 

 
Appendix C shows a complete approach to the design. 
 
Section 9 – shows three selected microwave oscillators for validation purposes which 
provide state-of-the-art phase noise.  Their design was built upon the optimization shown 
in Section 8.  Bipolar transistors and GaAs FETs are used.  Measured data was available 
for the 1000 and 4100 MHz oscillators with bipolar transistors, as well as the 2000 MHz 
GaAs FET oscillator.  The ceramic resonator-based oscillator shows a measured phase 
noise of 125 dBc/Hz at 10 kHz, 145 dBc/Hz at 100 kHz, and 160 dBc/Hz or better at 1 
MHz.  The 4.1 GHz oscillator shows a phase noise above 89 dBc/Hz at 10 kHz, 113 
dBc/Hz at 100 kHz, and 130 dBc/Hz at 1 MHz, which is in excellent agreement with the 
prediction.  The 2 GHz GaAs FET oscillator at 100 kHz offset is 2 dB too pessimistic and 
at 1 MHz 2 dB too optimistic.  Because of the high flicker corner frequency of the GaAs 
FET, this may be due to modeling problems.   
 
Section 10 – contains conclusions and recommendations for future work.  The 
derivations in this work were based on oscillator circuits with simple parasitics.  At 
frequencies above 4000 MHz, the circuit analysis becomes more complicated as more 
parasitics have to be identified.  A good example of this is shown in Appendix C.  
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Another conclusion is that regular push/pull CMOS oscillators where n = 2 or C1/C2 = 1 
do not have the best phase noise [99-107].   This does not apply for a push/pull Colpitts 
oscillator.  It will be an interesting task to design an asymmetrical oscillator with a 
symmetrical output. This work has concentrated on oscillators and the next important 
task is to find design guides for voltage controlled oscillators.  Recent publications have 
shown a differentially tuned oscillator which is quite promising [114].  As an extension 
of this work, an effort is currently being undertaken to design very wideband oscillators 
based on the push/push principal.  As a result of this work, a patent disclosure has been 
submitted for an international patent covering the United States, Asia, and Europe [97-
107].  
 
Section 11 – explains the various symbols and abbreviations.  To follow the established 
literature, some of the abbreviations can have more than one meaning. 
 
Section 12 – shows a list of all relevant references used throughout this work. 
 
Section 13 – contains Appendices A, B, and C.  This section contains three oscillator 
designs.  The Appendices are very important because they apply all the new design rules 
that have been established in this work.  These circuits were also used for verification 
purposes. 
 
The first design, Appendix A, is based on large-signal S-parameters for optimum power.  
The unique approach here also shows that an inductor, instead of a feedback capacitor 
may be needed to make the design for a given transistor possible.  This has not been 
shown in the literature before. 
 
The second design, Appendix B, is based on Bessel functions and on a large-signal 
design for best output power.  Consistent with Appendix A, a detailed numerical 
approach is given to easily follow the step-by-step procedure.  Again, the design is a 
typical application for a high performance oscillator.  In this case, the output power was 
the priority and the phase noise was allowed to degrade. 
 
The third design, Appendix C, combines all the technologies discussed in this work.  It 
starts with the specific requirements for output power and phase noise.  It further assumes 
a real transistor with its parasitics considered.  It shows the schematic first, which is the 
optimum choice for this application.  The Bessel function approach is used to determine 
the operating point and the bias point.  The design calculation shows that the key 
equation, Eq. (8-94) in Section 8, despite its simplification, gives an accurate answer for 
the phase noise at 10 kHz. The result is consistent with the predicted phase noise and the 
measured phase noise. 
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2 General Comments on Oscillators 
  
An oscillator consists of an amplifier and a resonant element, as well as a feedback 
circuit.  In many cases the intention is to build a selective amplifier, but an oscillator ends 
up being built because of internal or external feedback either in the active device or as 
part of the external circuit.  An amplifier is an electrical circuit with a defined input and 
output impedance which increases the level of the input signal to a predetermined value 
at the output.  The energy required for this is taken from the DC power supply connected 
to the amplifier.  The amplifier impedances can vary from several ohms to several Meg 
ohms, but for high frequency application, it is standard to build amplifiers with 50Ω real 
input and output impedance.  The active circuit responsible for the gain can be a bipolar 
transistor, a field-effect transistor, or a combination of both, or a gain block like a 
wideband amplifier offered by several companies.  These are typically a combination of 
Darlington stages with RF feedback.  Wideband amplifiers can cover frequencies such as 
a few hundred kHz to over ten thousand MHz.  An oscillator built with an amplifier and a 
tuned circuit is a device which transforms DC energy into RF energy.  It does this at a 
desired frequency at an acceptable efficiency. The efficiency of a low noise oscillator 
varies depending upon frequencies and configurations between 10% and 70%.  In most 
cases, the efficiency is a secondary problem, while the primary task is to have a signal 
frequency output which is stable, free of spurious signals (clean), low phase noise, and of 
sufficient level [12].  
 
The term “stability” refers to both short-term and long-term stability, and the oscillator 
should be clean in the sense it does not pick up unwanted signals and noise in the circuit.  
There are various noise sources which contribute to the oscillator noise.  Some examples 
are: the loss of the resonator, the noise sources inside the transistor, noise (hum) 
modulated on the power supply, and noise contributions from the tuning diode(s).  
 
This work will focus on phase noise optimization at a given and reasonable DC 
efficiency.  These type of oscillators, which can be voltage-controlled oscillators by 
adding a tuning diode, are required to have a sinusoidal voltage output. Most systems 
cannot tolerate high harmonics from the oscillator, as these will cause unwanted mixing 
products. 
 
Sinusoidal Oscillators 
 
All amplifier-based oscillators are inherently nonlinear. Although the nonlinearity results 
in some distortion of the signal, linear analysis techniques can normally be used for the 
initial analysis and design of oscillators. Figure 2-1 shows, in block diagram form, the 
necessary components of an oscillator. It contains an amplifier with frequency-dependent 
forward loop gain G(jω) and a frequency-dependent feedback network H(jω). 
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Figure 2-1  Block diagram of an oscillator showing forward and feedback loop components. 
 
The output voltage is given by 
 

( )
( ) ( )ωω

ω
jHjG

jGV
Vo +

=
1

in     (2-1) 

 
For an oscillator, the output Vo is nonzero even if the input signal Vin = 0. This can only 
be possible if the forward loop gain is infinite (which is not practical), or if the 
denominator 
 

( ) ( ) 01 =+ ωω jHjG      (2-2) 
 
at some frequency ωo. This leads to the well-known condition for oscillation (the Nyquist 
criterion), where at some frequency ωo 

 
( ) ( ) 1−=oo jHjG ωω      (2-3) 

 
That is, the magnitude of the open-loop transfer function is equal to 1: 
 

( ) ( ) 1=oo jHjG ωω      (2-4) 
 
and the phase shift is 180°: 
 

( ) ( )[ ] °= 180arg oo jHjG ωω     (2-5) 
 
This can be more simply expressed as follows: If in a negative-feedback system, the 
open-loop gain has a total phase shift of 180° at some frequency ωo, the system will 
oscillate at that frequency provided that the open-loop gain is unity. If the gain is less 
than unity at the frequency where the phase shift is 180°, the system will be stable, 
whereas if the gain is greater than unity, the system will be unstable. 
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This statement is not correct for some complicated systems, but it is correct for those 
transfer functions normally encountered in oscillator design. The conditions for stability 
are also known as the Barkhausen criterion, which states that if the closed-loop transfer 
function is 

µβ
µ

−
=

1in

o

V
V       (2-6) 

 
where µ is the forward voltage gain and β is the feedback voltage gain, the system will 
oscillate provided that µβ = 1. This is equivalent to the Nyquist criterion, the difference 
being that the transfer function is written for a loop with positive feedback. Both versions 
state that the total phase shift around the loop must be 360° at the frequency of oscillation 
and the magnitude of the open-loop gain must be unity at that frequency. 
 
2.1 Phase Noise Effects 
 
A noisy oscillator causes interference at adjacent channels, a phenomenon which is called 
blocking or reciprocal mixing.  Figure 2-2 shows how phase noise affects the signal of an 
ideal oscillator.   
 

 
Figure 2-2   Reciprocal mixing occurs when incoming signals mix energy from an oscillator's sidebands to 
the IF. In this example, the oscillator is tuned so that its carrier, at A', heterodynes the desired signal, A, to 
the 455 kHz as intended.  At the same time, the undesired signals B, C and D mix with the oscillator 
noise-sideband energy at B', C' and D', respectively, to the IF. Depending on the levels of the interfering 
signals and the noise-sideband energy, the result may be a significant rise in the receiver noise floor. 
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The spectral density, or phase noise, is measured in dBc (dB below the carrier) in a 
bandwidth of 1 Hz at an offset frequency fn.  The phase noise, therefore, is related to the 
output power.  The noise power and the curve shown in Figure 2-3 can have different 
shapes based on the noise sources, as seen in Figure 2-8. 
 

 
 

Figure 2-3   Phase noise calculation. 
 

 
 

Figure 2-4  Phase noise of an oscillator controlled by a phase-locked loop. 
 
If the oscillator is configured to be a VCO (voltage-controlled oscillator), the phase noise 
inside the loop bandwidth (hopefully) improves.  Outside the loop bandwidth, the phase 
noise is determined solely by the resonator of the oscillator as seen in Figure 2-4. 
 
Maximum condition, or the best phase noise number, is 10 × log (Poutput/kT) at room 
temperature calculating from kT (-174 dBm/Hz) to the output power typically between 0 
dBm and 30 dBm.  The tuned circuit is responsible for most of the filtering.  This 
phenomenon was first observed by Leeson in 1966 [70] and has been the basis of all 
linear-based assumptions.  Later, it will be shown that his approach, with some additional 
terms, forms a useful but not always scientifically accurate, method of characterizing the 
oscillator. 
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Again, if a strong signal is fed to the receiving system, it will mix with the noise bands of 
the oscillator and produce a noise signal at one or more adjacent channels.  This effect 
desensitizes or blocks the channel or one or more adjacent channels.  Reciprocal mixing 
is a descriptive term as it shows that the phase noise of the oscillator at a given space is 
being mixed as an unwanted effect to the desired channel.  Figures 2-5 and 2-6 show the 
mechanism of reciprocal mixing for both an analog and a digital receiver.  In the case of 
the analog receiver, the phase noise of the oscillator and its spurious signals create 
interfering signals, while in the case of the digital receiver a desensitization occurs [14]. 
  

 
  

Figure 2-5   Principle of selectivity measurement for analog receivers. 
  
 

 
  

Figure 2-6   Principle of selectivity measurement for digital receivers. 
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2.2 Specifications of Oscillators and VCOs 
  
The properties of an oscillator can be described in a set of parameters.  The following is a 
list of the important and relevant parameters as they need to be discussed with oscillators. 
  
Frequency Range 
  
The output frequency of a VCO can vary over a wide range.  The frequency range is 
determined by the architecture of the oscillator. A standard VCO has a frequency range 
typically less than 2:1, as an example, 925-1650 MHz. 
  
Phase Noise 
  
Unfortunately, oscillators do not generate perfect signals.  The various noise sources in 
and outside of the transistor modulate the VCO, resulting in energy or spectral 
distribution on both sides of the carrier.  This occurs via modulation and frequency 
conversion.  The noise, or better, AM and FM noise is expressed as the ratio of output 
power divided by the noise power relative to 1 Hz bandwidth measured at an offset of the 
carrier.  Figure 2-7 shows a typical measured phase noise plot of a high Q oscillator using 
a ceramic resonator. 
  

 
  

Figure 2-7   Measured phase noise of an 880-MHz resonator-based oscillator with a small tuning range.  
 
The stability or phase noise of an oscillator can be determined in the time and frequency 
domain.  Phase noise is a short-term phenomenon and has various components.  Figure 2-
8a shows the stability in the time domain.  For an oscillator or VCO, this is rarely 
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relevant because the oscillator is used in a PLL system.  The phase noise characteristics 
are more important and Figure 2-8b shows the various contributions.  These contributions 
will be analyzed in the next section. 
  

 
Figure 2-8  Characterization of a noise sideband in the time and frequency domain and its contributions: 
(a) time domain and (b) frequency domain.  Note that two different effects are considered, such as aging 
in (a) and phase noise in (b). 
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Output Power 
  
The output power is measured at the designated output port of the frequency synthesizer.  
Practical designs require one or more isolation stages between the oscillator and the 
output.  The VCO output power can vary as much as ±2 dB over the tuning range.  A 
typical output level is 0 to +10 dBm. 
  
Harmonic Suppression 
  
The oscillator/VCO has a typical harmonic suppression of better than 15 dB.  For high 
performance applications, a low pass filter at the output will reduce the harmonic 
contents to a desired level.  Figure 2-9 shows a typical output power plot of a VCO. 
   

 
Figure 2-9  Predicted harmonics at the output of a microwave oscillator. 

  
 Output Power as a Function of Temperature 
  
All active circuits vary in performance as a function of temperature.  The output power of 
an oscillator over a temperature range should vary less than a specified value, such as      
1 dB. 
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Spurious Response 
  
Spurious outputs are signals found around the carrier of an oscillator which are not 
harmonically related.  A good, clean oscillator needs to have a spurious-free range of 
90 dB, but these requirements make it expensive.  Oscillators typically have no spurious 
frequencies besides possibly 60 Hz and 120 Hz pick-up.  The digital electronics in a 
synthesizer generates a lot of signals, and when modulated on the VCO, are responsible 
for these unwanted output products.   
  
Frequency Pushing 
  
Frequency pushing characterizes the degree to which an oscillator’s frequency is affected 
by its supply voltage.  For example, a sudden current surge caused by activating a 
transceiver’s RF power amplifier may produce a spike on the VCOs DC power supply 
and a consequent frequency jump.  Frequency pushing is specified in frequency/voltage 
form and is tested by varying the VCOs DC supply voltage (typically ± 1V) with its 
tuning voltage held constant.  Frequency pushing must be minimized, especially in cases 
where power stages are close to the VCO unit and short pulses may affect the output 
frequency.  Poor isolation can make phase locking impossible. 
 
Sensitivity to Load Changes 
  
To keep manufacturing costs down, many wireless applications use a VCO alone, without 
the buffering action of a high reverse-isolation amplifier stage.  In such applications, 
frequency pulling, the change of frequency resulting from partially reactive loads, is an 
important oscillator characteristic.  Pulling is commonly specified in terms of the 
frequency shift that occurs when the oscillator is connected to a load that exhibits a non-
unity VSWR (such as 1.75, usually referenced to 50Ω), compared to the frequency that 
results with unity-VSWR load (usually 50Ω). 
  
Post-tuning Drift 
  
After a voltage step is applied to the tuning diode input, the oscillator frequency may 
continue to change until it settles to a final value.  The post-tuning drift is one of the 
parameters that limits the bandwidth of the VCO input and the tuning speed. 
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Tuning Characteristic 
  
This specification shows the relationship, depicted as a graph, between the VCO 
operating frequency and the tuning voltage applied.  Ideally, the correspondence between 
operating frequency and tuning voltage is linear. 
  
Tuning Linearity 
  
For stable synthesizers, a linear deviation of frequency versus tuning voltage is desirable.  
It is also important to make sure that there are no breaks in tuning range, for example, 
that the oscillator does not stop operating with a tuning voltage of 0V. 
 
Tuning Sensitivity, Tuning Performance 
  
This datum, typically expressed in megahertz per volt (MHz/V), characterizes how much 
the frequency of a VCO changes per unit of tuning voltage change. 
  
Tuning Speed 
  
This characteristic is defined as the time necessary for the VCO to reach 90% of its final 
frequency upon the application of a tuning voltage step.  Tuning speed depends on the 
internal components between the input pin and the tuning diode, including, among other 
things, the capacitance present at the input port.  The input port’s parasitic elements, as 
well as the tuning diode, determine the VCOs maximum possible modulation bandwidth. 
  
Power Consumption 
  
This characteristic conveys the DC power, usually specified in milliwatts and sometimes 
qualified by operating voltage, required by the oscillator to function properly. 
 
2.3 History of Microwave Oscillators 
 
Early microwave oscillators were built around electron tubes and great efforts were made 
to obtain gain and power at high frequencies.  Starting from simple glass triodes 
(lighthouse tubes) and coaxial ceramic triodes, a large number of circuits designed to 
obtain reasonable performance were built.  After using the Lecher lines (quarter-wave 
length U-shaped parallel wires, shorted at the end, with a few centimeters spacing), the 
next step was the use of coaxial systems, which became mechanically very difficult and 
expensive.  At higher frequencies, cavities dominated the application and a lot of 
publications dealt with the various resonant modes.  For special applications such as 
microwave ovens and radar applications, magnetrons and reflex klystrons were 
developed. 
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Today, the good understanding of the planar structures, such as microstrip, stripline, and 
coplanar waveguide have been instrumental in extending the practical frequency range up 
to 100 GHz and higher.   
 
Early transistors followed the same trend. Siemens at one time produced a coaxial 
microwave transistor, Model TV44 and Motorola offered similar devices.  Today, 
microwave transistors, when packaged, are also in microstrip form or are sold as bare die, 
which can be connected via bond wires to the circuit.  These bond wires exhibit parasitic 
effects and can be utilized as part of the actual circuit.  The highest form of integration is 
RFICs, either in gallium arsenide (GaAs) or in silicon germanium (SiGe) technology.   
 
The SiGe circuits are typically more broadband because of lower impedances and GaAs 
FETs are fairly high impedance at the input.  From an application point of view, in 
oscillators, SiGe seems to be winning.   From a practical design, both transistor types can 
be considered a black box with a set of S parameters, which are bias and frequency 
dependent.  
 
We will see that the transistor operates in large-signal condition, and historically, people 
have used FETs to demonstrate that there is little change in parameters from small to 
large-signal operation.  Bipolar transistors have much more pronounced changes.   
 
Early pioneers have invented a variety of oscillator circuits which are named after them.  
The following picture, Figure 2-10, shows a set of schematics, applicable for both bipolar 
and field-effect transistors.  The ones using magnetic coupling are not useful for 
microwave applications. 
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Figure  2-10    Six different configurations which can be built either around bipolar transistors or FETs.   
Some of the modern microwave oscillators are built around the Colpitts and Clapp oscillator circuits [15]. 
 
The Colpitts and Clapp oscillator configurations show an air variable capacitor as a 
tuning element.  As the technology progressed, they were replaced by tuning diodes. 
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2.4 Three Types of Microwave Oscillators 
 
The oscillator types shown in the previous section where shown for historical reasons.  
As mentioned, the Colpitts oscillator and its cousin, the Clapp oscillator, have found their 
way into modern microwave applications.  The basic concept is that the capacitive 
feedback arrangement generates a negative resistance across the tuned circuit which 
compensates the losses of the tuned circuit. 
 
These types of oscillators are called one-port oscillators because the transistor and the 
feedback circuit can be substituted with a negative resistance.  For stable operation, the 
feedback capacitance values have to be carefully selected, as will be shown in the next 
section.  As the gain varies with frequency, it limits the tuning range, which also affects 
the phase noise and the output power.  Figure 2-11 shows the Colpitts-type oscillator.  
Tuning this circuit will alter these conditions for optimal phase noise and requires 
additional tunable elements to achieve optimal performance. 
 

 
Figure 2-11   Schematic of a voltage-controlled Colpitts-type oscillator.  The Colpitts circuit is recognized 
by the capacitive feedback network comprised of the capacitors connected between base and emitter and 
emitter to ground.  This will be further explained in the appropriate section. 
 
A second type of oscillator is the two-port oscillator.  The transistor is used as a two-
terminal device, with the third terminal at ground and its tuned circuit as a feedback 
element determines the frequency as shown in Figure 2-12. 
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As the transistor, or black box in question, has a frequency dependent Y21 (or S21), one 
needs an additional element to compensate the phase shift generated inside the black box.  
These types of oscillators, therefore, have a gain block, a phase shift/matching circuit, 
and a resonator.  In this configuration, the resonators are typically used in a Π 
configuration and in series resonant mode.  A typical candidate for this is a SAW 
resonator (Surface Acoustical Wave).  This is shown in Figure 2-12.  The resonator is 
used in series resonant mode. 

 
Figure 2-12  Circuit diagram of a 2-port SAW oscillator. 

 
 

The third type of oscillator, which is typically used for microwave frequencies greater 
than 4 GHz, is shown in Figure 2-13.  The base of the device (3-port, 3-terminal device) 
is floating above ground via a base (or gate) inductor.  The feedback occurs due to the 
inductor and the capacitive portion of Y22 (or S22).  This circuit type was first explained by 
[2].  This type of feedback generates a negative input and output resistance for the circuit, 
which as an example, can match the 50Ω load [16, 17].   
 



 

24  

 
 

Figure 2-13   Circuit diagram of a 4 GHz oscillator using series feedback with the Infineon transistor 
BFP520. 
 
 
Three-Reactance Oscillators Using Y-Parameters, An Introduction 
 
Although the block-diagram formulation of the stability criteria shown earlier is the 
easiest to express mathematically, it is frequently not the easiest to apply since it is often 
difficult to identify the forward loop gain G(jω) and the feedback ratio H(jω) in 
electronic systems. A direct analysis of the circuit equations is frequently simpler than the 
block diagram interpretation (particularly for single-stage amplifiers). Figure 2-14 shows 
a generalized circuit for an electronic amplifier.  This approach here uses Y- parameters.  
In the next section, a complete, complex analysis with Y and S parameters will follow.  
First, the concept of oscillator analysis will be introduced. 
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Figure 2-14  General topology of the Colpitts oscillator. 
 
 
Figure 2-14 shows a simplified Colpitts oscillator, which is derived from Figure 2-11.  It 
has a capacitive feedback network, C1 and C2, and a tuned circuit, which is built from the 
inductor L and the capacitor C and coupled to the transistor circuit via a coupling 
capacitor CC.  Figure 2-14 can be redrawn by putting the tuned circuit with its coupling 
capacitor between base and collector.  The feedback capacitor C1 now is in parallel to the 
base emitter junction, and the feedback capacitor C2 is in parallel to the collector emitter 
connection.  We also assume a load resistor marked RL in parallel with C2.  This is shown 
in Figure 2-15. 
 

 
Figure 2-15  Modified Colpitts oscillator. 
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For the purpose of having a general arrangement, we are now introducing the admittance 
Y1, Y2, and Y3.  For this early introduction, we also assume that the transistor is ideal, 
meaning that we are assuming that Y12 = 0, and in Im(Y11, Y22) = 0.  Later we will 
reformulate without this assumption. 

 
Figure 2-16   Equivalent circuit of the feedback oscillator. 

  
Figure 2-16 shows the feedback circuit with three parallel admittances.  Y2 can either be a 
reactance or a more complex circuit such as a resonance circuit with a capacitance in 
series.  In the case of a crystal oscillator, Y2 is a series resonant circuit with a parallel 
capacitor, which comes from the crystal holder.  The voltages V1, V2, and V3 are measured 
relative to ground.  The circuit is assumed floating. 
 
It can be shown that:  
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In this equation Yi = Y11 and Y21 are the Y-parameters of the transistor. 
 
In order for this circuit to oscillate, it must satisfy the matrix condition [Y][V] = 0 for a 
non-zero value of [V] (output power).  Assuming the feedback circuit has lossless 
components, then  
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If the feedback network has ideal reactive components and Y11 = real, then  
 

332211 ,,, jBYjBYjBYGY ii ====     (2-9) 
 
and the equation above is further simplified to: 
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From the equation above, the real and imaginary part will need to be zero separately to satisfy 
det[Y]=0. 
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If we convert susceptance to reactance, and let  
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Feedback conditions:         
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If Y21 and Gi are positive (simplified transistor model), it is implied that X1 and X2 have the 
same sign, and therefore, either capacitors or inductors.  X1+ X2+ X3=0, implies that X3 
must be opposite in sign from X1 and X2, and therefore, the opposite type of component. 
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For complex value of Y3 (Lossy Inductor): 
 









+=⇒








++=

=+++

+=

=⇒+=

2
'

131213

3
121

33

3
3333

111111

0
11

1

CCLC
RG

CCL

Lj
Cj
RG

CjCj

LjRZ
Z

YjBGY

i

i

ωω

ω
ωωω

ω

   (2-17) 

where 
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For steady oscillation the following condition has to be satisfied: 
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Since 
iG

Y21  is the frequency dependent current gain β: 



















−

+
<

1

3

21
211

)1(
C
L

CC
YrealRLoss ω

β
     (2-21) 

 
A similar approach is found in [15]. 
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3 Transistor Models 
 
Introduction 
 
For the design of oscillators we are looking at members of bipolar and field-effect 
transistor families.  In the case of the bipolar transistor, conventional microwave silicon 
transistors are manufactured with an fT up to 25 GHz, while the more advanced SiGe 
transistors take over from this frequency range.  Today, SiGe transistors are available up 
to 100 GHz if used as part of an RFIC.  Their cousins, the heterojunction bipolar 
transistors (HBTs), based on GaAs technology, can achieve similar cut-off frequencies, 
but this technology is much more expensive for medium to large integrated circuits.  
HBTs also have a higher flicker noise corner frequency.  SiGe transistors have a much 
lower flicker noise corner frequency and lower breakdown voltages (typically 2-3V).  
However, because of the losses of the transmission line in practical circuits, there is not 
much difference between HBT and SiGe oscillator noise as fT is the same. 
 
There is a similar competing situation between Bi-CMOS transistors implemented in a 
0.12 micron technology and with GaAs FETs, specifically p-HEMTs.  The GaAs FETs 
have well-established performance with good models, and the Bi-CMOS transistors are 
currently being investigated as to what models are the best.  Also, there is the 1/f noise 
problem, specifically, with GaAs FETs more than with MOS transistors.  The 0.12µm 
technology is somewhat impractical because of poor modeling.  This means that most 
CAD predictions do not translate in a good design. 
 
For the purpose of this discussion, it should be assumed that the designer has the ability 
to do their own parameter extraction to obtain an accurate model, or receive this data 
from the transistor manufacturer, or as part of the foundry service. 
 
While the bipolar transistor models tend to be more physics-based, the FET models are 
mostly based on analytic equations, which are generated using curve-fitting techniques. 
 
There are two types of models:  

1) The models which describe DC and RF behavior are SPICE-type models, which 
means they can be incorporated in a frequency/time domain simulator and give 
reasonable agreement with measured data, both in the DC and RF areas.  

2) Linear RF microwave models based on equivalent circuits.   
 
In the bipolar modeling world, the Ebers-Moll equations have been used to generate the 
Gummel-Poon model (transport model) and its various subtle, modified (sometimes) 
proprietary implementations.  Only in SPICE, particularly in Berkley-SPICE and H-
SPICE, do we find these models to which the industry has agreed upon [18, 19].  Two 
other important and popular SPICE programs are P-SPICE and RF Spectre from 
CADENCE Design Systems [20, 21].  As an extension to this modeling effort, the 
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University of Delft/Philips has introduced a complex model consisting of a NPN and a 
complimentary PNP transistor for better RF modeling [22-24].  This model claims better 
simulation results for intermodulation distortion products under large-signal conditions.  
For the purpose of noise calculation of oscillators, one needs to know that the modulation 
indices are so small and the resulting noise currents and voltages are so small compared 
to the RF currents/voltages.  The standard models, which are continuous and the third 
derivative to voltage and current exists, are sufficient. 
 
For members of the FET family, the development of models was based on junction-FETs 
and MOS-transistors as implemented in early forms of SPICE.  Junction-FETs are 
available only up to 1000 MHz and have lost importance in the RF and microwave area. 
 
The first models for GaAs transistors were the Curtice-Ettenberg models, particularly the 
quadratic and cubic models.  They were developed from the MOS model by adding a 
diode at the gate and removing the MOS capacitor at the input.  Today, there is a long list 
of GaAs models where the individual researchers believe their model has big advantages. 
 
These models are used to describe the behavior of the transistors over a wide frequency, 
temperature and bias range.  Their accuracy varies by model.  The most important factors 
are the input parameters.  They are obtained from a process called parameter extraction.  
Having used CAD tools for a long time, it appears that a majority of discrepancies 
between measured and modeled results can be explained by a lack of accuracy stemming 
from parameter extraction.  There is very little software available for reliable parameter 
extraction. Many companies have written their own software and assembled the 
necessary test equipment to obtain those parameters.  The most popular software tools are 
from Silvaco and Agilent. 
 
A successful path for generating model parameters has been the extraction of DC and RF 
parameters using DC I-V data and S-parameter data sets under various bias and frequency 
conditions.  The model equations are curve fit to the data.  To more accurately extract 
parameters that affect the noise characteristics of the model, it has also been proposed to 
include noise data as part of the parameter extraction procedure [25, 26]. 
 
When experimenting with these parameter extraction programs, it will be noticed that 
under certain conditions, input parameters for the nonlinear models are generated, which 
no longer have any practical meaning.  This means that they are not realizable in the 
manufacturing process, but in a given frequency range, may give the right S-parameters.  
The inclusion of noise parameters cures this problem to a large extent [27, 28].   
 
The following shows the information obtained for bipolar transistors and their modeling.  
The synthesis approach is applicable to all three terminal devices, which includes not 
only bipolar transistors, but all FETs such as JFETs, GaAs FETs, and MOSFET 
transistors.  
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Bipolar Transistors 
 
The bipolar transistor has been known and used for many decades.  Many scientists have 
explained its behavior, and probably the best analysis in the DC/RF area is summarized 
in [29].  This summary is based largely on the Infineon transistor BFP520 as an example, 
but is applicable to other transistors also.  
 

 
 
Figure 3-1   Shows an equivalent circuit for a microwave bipolar transistor.  It deviates from the SPICE 
implementation by having two base-spreading resistors. 
 
The first thing we need to do is look at the model used to calculate the DC and RF 
performance of a microwave transistor.  There are subtle differences between the 
standard SPICE implementation and the one suited for higher frequencies.  Figure 3-1 
shows a modification that was necessary for greater accuracy by introducing an 
additional base-spreading resistor, Rb2. 
 
Obtaining the input parameters is a major issue.  For the purpose of this work, the 
Infineon transistor, model BFP520, was chosen.  It is well documented and has a high 
enough operating frequency.  Figures 3-2 to 3-5 and Table 3-1 reproduce the 
manufacturers data. 
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BFP520 

NPN Silicon RF Transistor 
 

•  For highest gain low noise amplifier at 1.8 GHz and 2 mA/2V 
     Outstanding Gms = 23 dB 
      Noise Figure F = 0.95 dB 

•  For oscillators up to 15 GHz 
•  Transition frequency fT = 45 GHz 
•  Gold metalization for high reliability 
•  SIEGET  45-Line 

       45 GHZ fT – Line 
 
Figure 3-2 shows measured data provided from Infineon to further characterize the transistor. 
 

 
 

Figure 3-2   SPICE parameters and package equivalent circuit of the Infineon transistor BFP520. 
 



 

33  

These parameters are fit to the Berkley-SPICE 2G.6 syntax.  In case of the base-
spreading resistor, it is recommend that it be separated into two equal terms to fit the 
improved model shown above.  Likewise, the feedback capacitor should also be split into 
two terms.  The equivalent circuit of the package is valid up to 6 GHz and assumes that 
the two emitter leads are tied together. 
 

 
Figure 3-3   Transition frequency as a function of voltage and current. 
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Figure 3-4  Noise figure and source impedance for best noise figure as a function of current and 
frequency of the Infineon transistor BFP520. 
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Figure 3-5   Some technical data of the Infineon transistor BFP520. 
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Table 3-1 

 

 
 
The Infineon data set also contains noise parameters and S-parameters (see Table 1), 
however, these are less relevant because the large-signal conditions will modulate the 
intrinsic nonlinear capacitances and other elements so a large-signal noise model is 
needed.  The following equivalent circuit in Figure 3-6 can be used to calculate the noise 
performance.  Noise is mostly assumed to be derived in a linear mode, specifically, the 
flicker corner frequency under a large-signal condition will change significantly [30].  
Information about SiGe transistors with much higher operating frequencies is well shown 
in [89-98]. 
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Figure 3-6   Noise model of the bipolar transistor (not showing extrinsic parasitics).  Current sources with 
“n” are noise sources. 
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4 Large Signal S-Parameters 
 
The description of linear, active or passive two-ports, can be explained in various forms.  
In the early days Z-parameters were commonly used which then were replaced by the Y-
parameters.  Z-parameters are assumed open-ended measurements and Y-parameters are 
short circuit measurements relative to the output or input depending on the parameter.  In 
reality, however, the open circuit condition does not work at high frequencies because it 
becomes capacitive and results in erroneous measurements.  The short-circuit 
measurements also suffer from non-ideal conditions as most “shorts” become inductive.  
Most RF and microwave circuits, because of the availability of 50Ω coaxial cables, are 
now using 50Ω impedances. Component manufacturers are able to produce 50Ω 
termination resistors which maintain their 50Ω real impedance up to tens of GHz (40 
GHz).  The 50Ω system has become a defacto standard.  While the Z- and Y-parameter 
measurements were based on voltage and currents at the input and output, the S-
parameters refer to forward and reflected power. 
 
4.1  Definition 
 
For low frequency applications, one can safely assume that the connecting cable from the 
source to the device under test or the device under test to the load plays no significant 
role.  The wavelength of the signal at the input and output is very large compared to the 
physical length of the cable.  At higher frequencies, such as microwave frequencies, this 
is no longer true.  Therefore, a measuring principle was founded which would look at the 
incoming and the outgoing power at the input and output.  The following is a 
mathematical explanation of the S-parameters.  This follows the definitions of [14] as 
outlined by Hewlett-Packard.  
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or, in matrix form, 
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where, referring to Figure 2-78: 
 

a1 = (incoming power at Port 1)½ 
b1 = (outgoing power at Port 1)½ 
a2 = (incoming power at Port 2)½ 
b2 = (outgoing power at Port 2)½

 
E1, E2 = electrical stimuli at Port 1, Port 2 
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Figure 4-1  Two-port S-parameter definition. 
 
From Figure 4-1 and defining linear equations, For E2 = 0, then a2 = 0, and (skipping 
through numerous rigorous steps): 
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or, more precisely in the case of S21: 
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Similarly at Port 2 for E1=0, then a1=0, and 
 

t Coefficien ReflectionOutput 
2

2
22 ==

a
b

S    (4-8) 



 

40  

[ ] 2
1

2

1
12 Gain Transducer Reverse==

a
b

S    (4-9) 

2
12TR SG =      (4-10) 

 
Since many measurement systems display S-parameter magnitudes in decibels, the 
following relationships are particularly useful [54-57]: 
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4.1 Large Signal S-Parameter Measurements 
 
Assume S11 and S21 are functions only of incident power at port 1 and S22 and S12 are functions 
only of incident power at port 2.  Note: the plus (+) sign indicates the forward wave (voltage) 
and the minus (-) sign would be the reflected wave (voltage). 
 

( )+= 11111 VSS  ( )+= 21212 VSS    (4-15) 
 

( )+= 12121 VSS  ( )+= 22222 VSS    (4-16) 
 
The relationship between the travelling waves now becomes 
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41  

Measurement is possible if V1
+ is set to zero, 
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Check the assumption by simultaneous application of V1

+ and V2
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If harmonics are neglected, a general decomposition is  
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As mentioned before, these measurements are initially done under small-signal 
conditions with the RF power increasing up to 0 dBm or larger as needed.  Small-signal 
conditions mean power levels of the vicinity of –40 dBm.  The network analyzers which 
are used to measure these S-parameters have bias tees built-in and have 90 dB dynamic 
range.  For the measurement of S-parameters of transistors, a much smaller dynamic 
range is sufficient. 
 
If the output signal from the signal generator is increased in power, it essentially has no 
impact on passive devices until a level of several hundred watts is reached where 
intermodulation distortion products can be created due to dissimilar alloys. However, 
active devices, depending on the DC bias point, can only tolerate relatively low RF levels 
to remain in the linear region. 
 

 
 
  
Figure 4-2   Test fixture to measure large signal 
S-parameters.  A proper de-embedding has 
been done [27]. 

Figure 4-3   Rohde & Schwarz 3 GHz network analyzer 
to measure the large-signal S-parameters at different 
drive levels. 
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In the case of the oscillator, there is a large RF signal, voltage and current, imposed on 
the DC voltage/current.  Assuming an RF output power from 0 dBm to 10 dBm, and 
assuming 10-15 dB gain in the transistor, the RF power level driving the emitter/source 
or base/gate terminal is somewhere in the vicinity of –15 dBm. 
 
An RF drive of –15 dBm will change the input and output impedance of the transistor, 
even if the transistor operates at fairly large DC currents. 
 
It is important to note that the input and output impedances of field-effect transistors are 
much less RF voltage-dependent or power-dependent than the bipolar transistor.  The 
generation of “large signal S-parameters” for bipolar transistors is, therefore, much more 
important than for FETs.   
 
Figure 4-2 shows the test fixture which was used to measure the large-signal S-
parameters for the device under test (DUT).  The test fixture was calibrated to provide 
50Ω to the transistor leads.  The test set-up shown in Figure 4-3 consists of a DC power 
supply and a network analyzer for combined S-parameter measurements.  The R&S ZVR 
network analyzer, as shown in Figure 4-3, was chosen because its output can be changed 
from +10 dBm to –60 dBm.  This feature is necessary to perform these measurements.  
The picture shows that the actual test system is very simple, but unfortunately, very 
expensive. 
 
Currents and voltages follow Kirchof’s law in a linear system.  A linear system implies 
that there is a linear relationship between currents and voltages.  All transistors, when 
driven at larger levels, show nonlinear characteristics.  The FET shows a square law 
characteristic, while the bipolar transistor has an exponential transfer characteristic.  The 
definition of S-parameters in large-signal environment is ambiguous compared to small-
signal S-parameters.  When driving an active device with an increasingly higher level, the 
output current consists of a DC current and RF currents, the fundamental frequency and 
its harmonics.  When increasing the drive level, the harmonic contents rapidly increases.  
S12, mostly defined by the feedback capacitance, now reflects harmonics back to the 
input.  If these measurements are done in a 50Ω system, which has no reactive 
components, then we have an ideal system for termination.  In practical applications, 
however, the output is a tuned circuit or matching network which is frequency selective.  
Depending on the type of circuit, it typically presents either a short circuit or an open 
circuit for the harmonic.  For example, say the matching network has a resonant condition 
at the fundamental and second harmonic frequency or at the fundamental and third 
harmonic freuquency (quarterwave resonator).  Then a high voltage occurs at the third 
harmonic, which affects the input impedance, and therefore, S11 (Miller effect).  
 
This indicates that S-parameters measured under large-signal conditions in an ideal 50Ω 
system may not correctly predict device behavior when used in a non-50Ω environment. 
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A method called load pulling, which includes fundamental harmonics, has been 
developed to deal with this issue [58-62]. 
 
In the case of an oscillator, however, there is only one high Q resonator which suppresses 
the harmonics of the fundamental frequency (short circuit).  In this limited case, the S-
parameters, stemming from a 50Ω system, are useful.  The following tables show two 
sets of measurements generated from the Infineon transistor BFP520 under different 
drive levels. 
 
Since the oscillator will be in quasi-large-signal operation, we will need the large-signal 
S-parameters as a starting condition for the large-signal design (output power, harmonics, 
and others).  The S-parameters generated from this will be converted into Y-parameters, 
defined under large-signal conditions and then used for calculating the large-signal 
behavior.  We will use the symbol Y+ to designate large-signal Y-parameters.  Tables 4-1 
and 4-2 show the large-signal S-parameters for –20 dBm and –10 dBm.  However, in 
some cases the analysis starts at small-signal conditions.  All derivations have been 
verified with MATHCAD and the original text input has been used.  Therefore, in some 
cases the Y+ marker has not been used.  The use of the MATHCAD equation set allows 
for error free reuse of the equations. 
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Table 4-1 
 

Frequency Dependent S-Parameters 
 

LSignal 1 100MHz 3000MHz S-Parameters at “-20dBm” 
          S11           S21         S12           S22 

 
1.000E+08 0.78 -17.15 29.57 -160.6 0.01 69.66 0.96 -7.63 
1.500E+08 0.74 -19.95 30.87 -175.17 0.01 73.05 0.94 -10.27 
2.000E+08 0.71 -23.01 30.87 174.87 0.01 73.61 0.92 -12.8 
2.500E+08 0.69 -26.34 30.43 167.17 0.01 73.11 0.9 -15.25 
3.000E+08 0.66 -29.8 29.8 160.76 0.01 72.13 0.87 -17.61 
3.500E+08 0.64 -33.28 29.08 155.2 0.01 70.91 0.85 -19.92 
4.000E+08 0.61 -36.73 28.3 150.22 0.01 69.59 0.83 -22.16 
4.500E+08 0.59 -40.1 27.5 145.68 0.02 68.24 0.81 -24.33 
5.000E+08 0.56 -43.36 26.68 141.5 0.02 66.91 0.78 -26.44 
5.500E+08 0.53 -46.47 25.85 137.62 0.02 65.66 0.76 -28.44 
6.000E+08 0.51 -49.42 25.02 134 0.02 64.51 0.73 -30.33 
6.500E+08 0.48 -52.19 24.18 130.62 0.02 63.5 0.7 -32.07 
7.000E+08 0.46 -54.78 23.35 127.46 0.02 62.63 0.68 -33.64 
7.500E+08 0.44 -57.2 22.54 124.52 0.02 61.9 0.65 -35.04 
8.000E+08 0.42 -59.44 21.74 121.76 0.02 61.3 0.63 -36.26 
8.500E+08 0.39 -61.53 20.98 119.19 0.02 60.82 0.6 -37.31 
9.000E+08 0.38 -63.48 20.24 116.77 0.03 60.43 0.58 -38.2 
9.500E+08 0.36 -65.29 19.53 114.51 0.03 60.13 0.56 -38.95 
1.000E+09 0.34 -66.99 18.85 112.38 0.03 59.88 0.54 -39.57 
1.500E+09 0.22 -80.06 13.7 96.21 0.04 58.66 0.41 -41.5 
2.000E+09 0.14 -91.02 10.61 85.03 0.04 57.04 0.33 -40.51 
2.500E+09 0.09 -105.04 8.64 76 0.05 54.51 0.29 -39.1 
3.000E+09 0.06 -129.69 7.27 68.07 0.06 51.33 0.25 -37.7 
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Table 4-2 
 

Frequency Dependent S-Parameters 
 

LSignal 3  100MHz  3000MHz S-Parameters at “-10dBm”  
          S11           S21         S12           S22 
   
1.00E+08 0.81 -12.8 14.53 179.18 0.02 39.17 0.55 -20.62 
1.50E+08 0.79 -14.26 14.51 170.01 0.02 51.38 0.6 -24.42 
2.00E+08 0.77 -16.05 14.46 163.78 0.02 57.11 0.65 -27.11 
2.50E+08 0.76 -17.94 14.4 158.86 0.03 60.47 0.67 -28.33 
3.00E+08 0.74 -19.85 14.31 154.78 0.03 62.9 0.69 -28.28 
3.50E+08 0.73 -21.74 14.21 151.32 0.03 64.83 0.7 -27.33 
4.00E+08 0.72 -23.62 14.1 148.32 0.03 66.46 0.71 -25.99 
4.50E+08 0.71 -25.51 13.99 145.65 0.03 67.72 0.73 -24.6 
5.00E+08 0.7 -27.42 13.88 143.19 0.03 68.57 0.74 -23.39 
5.50E+08 0.68 -29.37 13.76 140.87 0.03 68.99 0.76 -22.5 
6.00E+08 0.67 -31.38 13.65 138.62 0.04 68.98 0.77 -21.93 
6.50E+08 0.66 -33.45 13.54 136.4 0.04 68.59 0.77 -21.68 
7.00E+08 0.64 -35.56 13.42 134.2 0.04 67.95 0.78 -21.68 
7.50E+08 0.63 -37.71 13.31 132 0.04 67.2 0.78 -21.89 
8.00E+08 0.61 -39.88 13.19 129.83 0.04 66.31 0.77 -22.25 
8.50E+08 0.59 -42.06 13.07 127.7 0.04 65.37 0.77 -22.62 
9.00E+08 0.58 -44.23 12.95 125.6 0.04 64.48 0.76 -23.26 
9.50E+08 0.56 -46.4 12.82 123.57 0.04 63.69 0.76 -24.04 
1.00E+09 0.54 -48.55 12.69 121.6 0.04 62.82 0.75 -24.71 
1.50E+09 0.37 -70.76 11.35 104.37 0.05 52.76 0.67 -33.77 
2.00E+09 0.21 -91.19 9.99 88.64 0.05 46.68 0.48 -43.79 
2.50E+09 0.12 -107.22 8.43 77.36 0.06 49.37 0.33 -43.13 
3.00E+09 0.07 -130.38 7.18 68.7 0.06 48.69 0.27 -40.46 

 
 
The following four plots, Figures 4-4, 4-5, 4-6, 4-7, show S11, S12, S21, and S22 measured 
from 50 MHz to 3000 MHz with driving levels from –20 dBm to 5 dBm.  The DC 
operation conditions were 2V and 20mA.   
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Figure 4-4   Measured large-signal S11 of the BFP520. 

 
 

 
Figure 4-5   Measured large-signal S12 of the BFP520. 
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Figure 4-6   Measured large-signal S21 of the BFP520. 
 
 

 
Figure 4-7 Measured large-signal S22 of the BFP520. 
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5 Resonator Choices 
 
5.1 LC Resonators 
 
The following resonators are found in various microwave oscillators.  The lumped 
resonator consists of a lossy 2pF capacitor and a lossy 1.76nH inductor with a 0.2pF 
parasitic capacitor.  The capacitor has a lead inductor of 0.2nH and 0.2Ω loss.  Likewise, 
the inductor has the same loss resistor.  To measure the operating Q, this combination is 
attached to a network analyzer, which determines S11. The operating Q is calculated by 
dividing the center frequency by the 3 dB bandwidth of S11.  The quality factor Q is 
defined as stored energy/dissipated energy.   If there is no energy loss, the Q is infinite.  
Figure 5-1 shows the circuit diagram of the resonator and the coupling.  
 

 
Figure 5-1   Shows the circuit diagram of a parallel tuned circuit with lossy components and parasitics 
loosely coupled to the input. 
 
To determine the operating Q of the circuit, let us calculate the Q of the individual 
branches.  The total Q of the circuit can be calculated by combining the two individual Q 
values following the equation. 
 

Q = 
21

21

QQ
QQ

+
×       (5-1) 

 
Q1 = 2 × π × 2.4 GHz × 1.76nH/0.2Ω = 133, Q2 =  165  

 
Q = 73 
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The reason for the low Q is due to the 0.2Ω loss resistor.  It should be possible to reduce 
this by more than a factor of 2. 
 
5.2 Microstrip Resonators 
 
Distributed/Lumped Resonators 
 
The same parallel tuned circuit can be generated by using a printed transmission line 
instead of the lumped inductor and maintain the same capacitance.  This is shown in 
Figure 5-2.  Since the transmission line has losses due to the material, they need to be 
considered.  It is not practical to calculate these by hand, but rather use a CAD program 
which does this accurately [115, 116].   These references describe how to get the Q factor 
from S11 measurements. 
 

 
Figure 5-2   2.4 GHz resonator using both lumped and distributed components.  The physical dimensions 
are given. 
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Figure 5-3   Simulated reflection coefficient S11 to determine the operating Q.  Since this material has 
fairly high losses, an operating Q of only 240 was achieved. 
 
 
The Q can be determined from the 3 dB bandwidth shown in Figure 5-3 and was 
determined to be 240.  This is also valid if the Y or Z parameters are used.  This is a 
typical value for a microstrip resonator.  Values up to 300 are possible if the appropriate 
layout and material is used.  
 
Integrated Resonators 
 
The same circuit can be generated not only using printed circuit board material, but also 
in GaAs or in silicon.  Figure 5-4 shows the schematic of a parallel tuned circuit using a 
rectangular inductor and an interdigital capacitor.  The ground connection is achieved 
using a via.  At 2.4 GHz, the number of turns and size of the inductor would be 
significant.  The same applies to the capacitor.  This arrangement should be reserved for 
much higher frequencies, above 5 GHz.  The inductor losses, both in GaAs and silicon 
are substantial and this case is only shown for completeness.  Where possible an external 
resonator should be used. 



 

51  

 
Figure 5-4   Parallel tuned circuit using a rectangular inductor (spiral could also be used) and an 
interdigital capacitor.  If implemented on GaAs or silicon, it exhibits low Q. 

 
 
5.3 Ceramic Resonators 
 
A very popular resonator is the ceramic resonator, which is based on a quarter-
wavelength arrangement.  The ceramic is silver plated and can be modeled as a cable 
with a high relative dielectric constant ranging from 33 to 88.  The two 1pF capacitors 
shown in Figure 5-5 load the resonator to achieve a resonance frequency of 2.4 GHz.  
This resonator has an operating Q of about 400, which is much higher than the previous 
cases.  By varying the capacitors, the frequency can be altered.  These are commercial 
parts, which are made by a variety of companies.  Most of the high performance 
800 MHz to 2.4 GHz oscillators use these resonators. 
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Figure 5-5   Shows a high Q resonator based on a quarter-wavelength ceramic resonator (CRO).  
Operating Q’s of up to 500 are easily achievable. 
 
 
5.4 Dielectric Resonators 
 
One of the highest-Q resonators is the dielectric resonator.  This is a resonant structure 
which is coupled to a transmission line.  Its physical dimensions and dielectric constant 
determine the operating frequency.  These resonators can have a Q of several thousand.  
By using the dielectric resonator/transmission line combination as part of an oscillator, 
very low phase noise oscillators can be obtained.  The drawback of this device is its 
temperature coefficient and the fact that it is tuned by using a mechanical post, which is a 
few millimeters above the resonator.  This is used for coarse tuning.  Its equivalent circuit 
is a high-Q parallel circuit replacing the resonator.  It is used as a stop-band filter as 
shown in Figure 5-6.   
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Figure 5-6    Shows a band-stop type resonant arrangement using a ceramic resonator. 

 
Figure 5-7 shows the simulated 3 dB bandwidth based on the S11.  The Q, of course, 
depends on the coupling to the transmission line and other factors such as the ratio of 
diameter to height of the resonator.  These types of resonators can be used to 20 GHz and 
above and have become quite popular as a point of reference for low-noise designs.   
 

 
Figure 5-7   Simulated S11 in dB for a dielectric resonator.  This can be used to determine the 3 dB 
bandwidth and the Q, if translated to Y or Z parameters.    
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6 General Theory of Oscillators  
 
6.1 Oscillator Equations 
 
The following section describes the linear theory of understanding and designing 
oscillators to be optimized for a specific frequency of oscillation and output power.  This 
is followed by analyzing the oscillator as a nonlinear system using a set of nonlinear 
equations, after the start-up conditions in the time-domain have been explored.  
 
Linear Theory 
 
The following is a general Y matrix approach to describe the feedback requirements for 
an oscillator.  Deviating from the standard approach, this will be done by S-parameters, 
which will then be converted into Y-parameters for easy calculations.  In the nonlinear 
analysis, Section 6.2, we will have to distinguish between the start-up condition and the 
sustaining condition.  The linear theory does not allow us to do this.  For the final 
calculation in the linear theory, the large-signal S-parameters converted to Y-parameters 
will be used rather than the small-signal values. 
 

 
General Oscillator Topology 

 
Figure 6-1   Shows a flow diagram on how to convert S-parameters of the measured device to a 3-port 
configuration for the transistor.  The elements for the Colpitts oscillator, as an example, are then added. 
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6.1.1 The Calculation of the Oscillating Condition  
 
Considering Parasitics 
 
In the practical case, the device parasitics and loss resistance of the resonator will play an 
important role in the oscillator design. Figure 6-2 incorporates the base lead-inductance 
Lp and the package-capacitance Cp. 
 

 
Figure 6-2   Colpitts oscillator with base-lead inductances and package capacitance.  CC is neglected.  
The equivalent circuit of the intrinsic transistor is shown in Figure 8-12.  
 
The expression of input impedance is given as 
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where Lp is the base-lead inductance of the bipolar transistor and Cp is base-emitter 
package capacitance.  All further circuits are based on this model. 
 
From the expression above, it is obvious that the base lead-inductance makes the input 
capacitance appear larger and the negative resistance appear smaller. The equivalent 
negative resistance and capacitance can be defined as 
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where  
 

NR :   Negative resistance without lead inductance and package capacitance. 

NEQR :   Negative resistance with base-lead inductance and package capacitance. 

EQC :   Equivalent capacitance with base-lead inductance and package capacitance 
 

At resonance: 
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The expression above can be rewritten in terms of a determinant as 
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and the resonance condition is given as 021 →−KK  
  
where 
 

)]1()()][1([ 22
21

2
21

22
1 pPC LYwCCCwLCwLCwK ++−−=     (6-10) 

 
]))(1)][(1([ 2

2121
22

21
22

2 YwLCCCLYwLCwwCK PPpC −+++−=    (6-11) 



 

57  

 

1K and 2K are expressed in terms of  the polynomial as 
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where the coefficients of the polynomial 1K are 
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and the coefficients of the polynomial 2K are 
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Now 21 KK − can be further simplified as 
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The function ),,,,,,( 161514131211 AAAAAAwf  will have five possible solutions, which can be 
solved with the help of MathCAD.  
 
For Lp → 0 
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CC is a coupling capacitor used for separating the bias circuit, and its value is normally 
small, but similar to C1 and C2, typically 0.2pF to 2pF.   
 
Rewriting the polynomial equation without considering CC,  
 

   



 

59  

       









+

+

=
C

CC
CC

L
w

21

21

1     (6-35) 

 
6.1.2 Parallel Feedback Oscillator 

 
Figure 6-3   Parallel feedback oscillator topology. 

 
This example uses the large-signal Y-parameters derived from the large-signal S-
parameters (measured or simulated).  
 
The steady state oscillation condition for the parallel feedback oscillators given in Figure 
6-3 is shown as 
 

03 ⇒+ YYout       (6-36) 
 
The steady-state stationary condition can be expressed as 
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where Yij (i,j=1,2) are Y-parameters of the hybrid bipolar/FET-transistor model. 
 
As shown in Figure 6-3, the active 2-port network, together with the feedback elements 
Y1 and Y2, are considered as a one-port negative resistance oscillator circuit. The output 
admittance Yout can be given as 
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According to optimum criterion, the optimum values of feedback susceptance B1 and B2, 
at which the negative value of Re[Yout] is maximum, are determined by solving the 
following differential condition: 
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and the solution of the above differential condition will give the optimum values of 
output admittance *

outY  and feedback susceptance *
1B and *

2B , which can be expressed in 
terms of the two-port Y-parameters of the active device (BJT/FET) as 
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 The optimum values of the real and imaginary part of the output admittance are  
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where *

outG and *
outB  is given as 
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Thus, in the steady-state stationary oscillation mode, the general condition for oscillation 
is given as: 
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where ][ 33 jBGY L += , LL RG /1= , LR  is the load resistance. 

The output power for the given load ][ 33 jBGY L +=  is given as Loutout GVP 2

2
1

= , where Vout 

is the voltage across the load.  We can now introduce the voltage feedback factor m and 
phase Φ n, which can be expressed in terms of the transistor Y-parameters as 
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An example is shown in Appendix A and explains the use of the two terms. 

 
6.2 Large-Signal Oscillator Design 

Traditionally, oscillators have been designed using small-signal parameters and 
establishing a negative resistance using a feedback network to compensate the losses.  
This approach allows for the determination of the start-up condition, but not for the time 
it takes to reach steady-state oscillation, nor the steady-state operating conditions, nor the 
output power.  Using a nonlinear approach described here, a design rule for maximum 
power will be given. Some applications impose higher priority on the DC efficiency 
rather than the best phase noise and the following steps will demonstrate a procedure to 
accomplish this.  The question of noise in oscillators and the optimization of oscillators 
for best noise will be shown in Section 7.   
 
6.2.1 Start-Up Condition 
 
The oscillator is an autonomous circuit.  The noise present in the active device or power 
supply turn-on transients leads to the initial oscillation build-up.  Linear analysis is useful 
only for analyzing oscillation start-up.  It is no longer valid as the oscillation amplitude 
continues to grow and the nonlinearity of the circuit becomes important. Nonlinear 
analysis needs to be used to predict the oscillation amplitude and the spectral purity of the 
oscillator output signal. As a basic requirement for producing a self-sustained near-
sinusoidal oscillation, an oscillator must have a pair of complex-conjugate poles on the 
imaginary axis i.e. in the right half of s-plane with α>0.  
 

βα jppP ±=),( 21      (6-49) 
 

While this requirement does not guarantee an oscillation with a well-defined steady-state 
(squeaking), it is a necessary condition for any oscillator. When subjected to an excitation 



 

62  

due to power supply turn-on transient or noise associated with the oscillator circuit, the 
right half plane poles in the equation above produce a sinusoidal signal with an 
exponentially growing envelope given as 
 

)cos()exp()( 0 ttVtv βα=     (6-50) 
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t
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=
      (6-51) 

 
V0 is determined by the initial conditions.  )(tv is eventually limited by the associated 
nonlinearity of the oscillator circuit. 
 
Using either a feedback model approach or a negative resistance model, one can perform 
the analysis of the oscillator.  Depending on the oscillator topology one approach is 
preferred over the other.  The condition of oscillation build-up and steady-state 
oscillation will be discussed using both approaches. 
 
Figure 6-4 shows, in block diagram form, the necessary components of an oscillator.  It 
contains an amplifier with the frequency-dependent forward amplifier gain block, G(jω), 
and a frequency-dependent feedback network, H(jω).  
 
When oscillation starts up, the signal level at the input of the amplifier is very small and 
the amplitude dependence of the forward amplifier gain can be initially neglected until it 
reaches saturation. 
 

 
 

Figure 6-4   Block diagram of basic feedback model-oscillator. 
 
The closed loop transfer function (T.F) and output voltage Vo(ω)  are given by 
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For an oscillator, the output voltage Vo is nonzero even if the input signal Vi = 0. This is 
only possible if the forward loop gain is infinite (which is not practical), or if the 
denominator ( ) ( ) 01 =+ ωω jHjG  at some frequency ωo; that is, the loop gain is equal to 
unity for some values of the complex frequency s=jω .  
 
This leads to the well-known condition for the Barkhausen criterion, and can be 
mathematically expressed  

 
( ) ( ) 1=oo jHjG ωω      (6-54) 

 
and  
 

( ) ( )[ ] ...2,1,02 == nwherenjHjGArg oo πωω    (6-55) 
 
When the Barkhausen criterion are met, the two conjugate poles of the overall transfer 
function are located on the imaginary axis of the s-plane. Any departure from that 
position will lead to an increase or a decrease of the amplitude of the oscillator output 
signal in time domain, which is shown in Figure 6-5. 
 

 
Figure 6-5   Frequency domain root locus and the corresponding time domain response. 

 
In practice, the equilibrium point cannot be reached instantaneously without violating 
some physical laws.  As an example, high-Q oscillators take longer than low-Q types to 
achieve full amplitude. The oscillator output sine wave cannot start at full amplitude 
instantaneously after the power supply is turned on.   The design of the circuit must be 
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such that at start-up, the poles are located in the right half plane, but not too far from the 
Y-axis.  However, the component tolerances and the nonlinearities of the amplifier will 
play a role.  This oscillation is achievable with a small-signal loop gain greater than 
unity.  As the output signal builds up, at least one parameter of the loop gain must change 
its value in such a way that the two complex-conjugate poles migrate in the direction of 
the Y-axis.  The parameter must then reach that axis for the desired steady-state amplitude 
value at a given oscillator frequency. 
 
Figure 6-6 shows the general schematic diagram of a one-port negative resistance model.  
The oscillator circuit is separated into a one-port active circuit which is nonlinear time 
variant (NLTV) and a one-port frequency-determining circuit, which is linear time 
invariant (LTIV). 
 
The frequency determining circuit or resonator sets the oscillation frequency and is 
amplitude independent. 
 

 
 

Figure 6-6   Schematic diagram of a one-port negative resistance model. 
 
Assuming that the steady state current at the active circuit is almost sinusoidal, the input 
impedance ),( fAZ a  can be expressed in terms of a negative resistance and reactance as 
  

),(),(),( fAjXfARfAZ aaa +=     (6-56) 
 
A is the amplitude of the steady state current into the active oscillator circuit and f is the 
resonant frequency. ),( fARa and ),( fAX a are the real and imaginary parts of the active 
circuit and depend on amplitude and frequency. 
 
Since the frequency-determining circuit is amplitude independent, it can be represented 
as  
 

)()()( fjXfRfZ rrr +=      (6-57) 
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)( fZ r is the input impedance of the frequency-determining circuit. )( fRr and )( fX r are 
the loss resistance and reactance associated with the resonator/frequency-determining 
circuit. 
  
To support the oscillator build-up, ),( fARa <0 is required so that the total loss associated 
with the frequency-determining circuit can be compensated.  Oscillation will start 
building up if the product of the input reflection coefficient, )( 0frΓ , looking into the 
frequency-determining circuit and the input reflection coefficient, ),( 00 fAaΓ ,of the active 
part of the oscillator circuit is unity at 0AA =  and 0ff = . 
 
The steady state oscillation condition can be expressed as 
 

1)(),()(),( 000
0

=ΓΓ⇒ΓΓ
=

ffAffA raffra      (6-58) 

 

 
 

Figure 6-7   Schematic diagram of a one-port negative reflection model. 
 
Figure 6-7 shows the input reflection coefficient ),( 00 fAaΓ  and )( 0frΓ , which can be 
represented in terms of the input impedance and the characteristic impedance 0Z  as 
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0)(),( 000 =+⇒ fZfAZ ra        (6-63) 

 
The characteristic equation 0)(),( 000 =+ fZfAZ ra  can be written as  

 
0)(),( 000 =+ fRfAR ra      (6-64) 

 
and  

0)(),( 000 =+ fXfAX ra      (6-65) 
 
To support the oscillator build-up, 0),( <fARa is required so that the total loss associated 
with )( 0fRr  of the frequency-determining circuit can be compensated.   This means that 
the one-port circuit is unstable for the frequency range 21 fff <<  where 

)(),(0),(
2121

fRfARfAR rfffafffa >⇒<
<<<< .  At the start-up oscillation, when the signal 

amplitude is very small, the amplitude dependence of the ),( fARa is negligible and the 
oscillation build-up conditions can be given as  
 

[ ] 0)()()()( ≤=+⇒+ = xrxaffra fRfRfRfR
x

   (6-66) 
     requires slight negative resistance 
 
and 

 
[ ] 0)()()()( =+⇒+ = xrxaffra fXfXfXfX

x
   (6-67) 

 
xf denotes the resonance frequency at which the total reactive component equals zero. 

The conditions above are necessary, but not sufficient conditions for oscillation build-up, 
particularly in the case when multiple frequencies exist to support the above shown 
conditions.  
 
To guarantee the oscillation build-up, the following condition at the given frequency 
needs to be met:  
 

[ ] 0)()( >+
∂
∂

= xffra fXfX
f

     (6-68) 

 
0)()( <+ xrxa fRfR       (6-69) 

 
0)()( =+ xrxa fXfX       (6-70) 
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Alternatively, for a parallel admittance topology  
 

0)()( =+ xrxa fYfY       (6-71) 
 

0)()( <+ xrxa fGfG       (6-72) 
 

0)()( =+ xrxa fBfB       (6-73) 
 

[ ] 0)()( >+
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= xffra fBfB
f

     (6-74) 

 
Figure 6-8 below shows the start and steady-state oscillation conditions. 

 

 
 

Figure 6-8   Plot of start and steady state oscillation conditions. 
 
 
To demonstrate the transient behavior, a ceramic resonator-based oscillator was designed 
and simulated as shown in Figure 6-9.  This transistor circuit, shown in Figure 9-2, is 
used several times in this work.  The transient analysis function of Ansoft Designer was 
used to show the DC bias shift and the settling of the amplitude of the oscillation that 
occurs after 60 nS.  The transient analysis of microwave circuits, because of the 
distributed elements, is a major problem for most CAD microwave simulators.  The 
voltage shown is sampled at the emitter of the Colpitts oscillator. 
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Figure 6-9   Transient simulation of the ceramic resonator-based high-Q oscillator shown in Figure 9-2.  
The voltage displayed is taken from the emitter.   
 
 
6.2.2 Steady-State Behavior 
 
As discussed earlier, if the closed-loop voltage gain has a pair of complex-conjugate 
poles in the right half of the s-plane, close to the imaginary axis, then due to an ever-
present noise voltage generated in the circuit or power-on transient, a growing, near-
sinusoidal voltage appears. As the oscillation amplitude grows, the amplitude-limiting 
capabilities, due to the change in transconductance from small-signal gm to the large-
signal Gm of the amplifier, produce a change in the location of the poles. The changes are 
such that the complex-conjugate poles move towards the imaginary axis and at some 
value of the oscillation amplitude, the poles reach the imaginary axis, giving the steady-
state oscillation. 
 

( ) ( ) 1=oo jHjG ωω       (6-75) 
 
In the case of the negative resistance model, the oscillation will continue to build up as 
long as ,)(),(;0),(

2121
fRfARorcircuitactivefAR rfffafffa >⇒<

<<<<  resonant circuit, see 
Figure 6-6. 
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The frequency of oscillation is determined by 0)(),( 000 =+ fRfAR ra . 
0)(),( 000 =+ fXfAX ra  might not be stable because ),( fAZ a is frequency and amplitude-

dependent.  To guarantee stable oscillation, the following conditions are to be satisfied: 
The first term of Eq. 6-76 is larger than the second term because the derivative of the 
negative resistance must be larger than or equal to the derivative of the loss resistance.   
This can be rewritten in the form of Eq. 6-77. 
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In the case of an LC resonant circuit, )( fRr is constant and the equation above can be 
simplified to 
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Alternatively, for a parallel tuned circuit, the steady-state oscillation condition is given as 
 

0)()( 00 =+ fGfG ra       (6-79) 
 

0)()( 00 =+ fBfB ra       (6-80) 
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6.2.3 Time-Domain Behavior 
 
The large-signal transfer characteristic affecting the current and voltage of an active 
device in an oscillator circuit is nonlinear.  It limits the amplitude of the oscillation and 
produces harmonic content in the output signal.  The resonant circuit and resulting phase 
shift sets the oscillation frequency.  The nonlinear, exponential relationship between the 
voltage and current of a bipolar transistor is given as 
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sI is device saturation current, )(tv is the voltage drive applied across the junction, k is 
Boltzman’s constant, q is the electronic charge, and T is the temperature of the device in 
Kelvins.   The bipolar case is mathematically more complex than the FET case.  For the 
FET a similar set of equations exist which can be derived.  Since most RFIC’s now use 
SiGe bipolar transistors, the bipolar case has been selected.   
 
The voltage )(tv across the base-emitter junction consists of a DC component and a 
driven signal voltage )cos(1 wtV .  It can be expressed as  
 

)cos()( 1 wtVVtv dc +=     (6-83) 
 
As the driven voltage )cos(1 wtV increases and develops enough amplitude across the 
base-emitter junction, the resulting current is a periodic series of pulses whose amplitude 
depends on the nonlinear characteristics of the device and is given as 
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assuming Ic ≈ Ie (β>10) 
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)(tie is the emitter current and x  is the drive level which is normalized to qkT / . 

  
From the Fourier series expansion, )cos(wtxe  is expressed as 
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)(xan is a Fourier coefficient and given as 
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)(xI n  is the modified Bessel function. 
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)(0 xI  are monotonic functions having positive values for x≥0 and n≥0; )0(0I is unity, 

whereas all higher order functions start at zero. 
 
The short current pulses are generated from the growing large-signal drive level across 
the base-emitter junction, which leads to strong harmonic generation. The emitter current 
represented above can be expressed in terms of harmonics as 
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Is = collector saturation current 
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dcQV  and dcI  are the operating DC bias voltage and the DC value of the emitter current. 
Furthermore, the Fourier transform of )(tie , a current pulse or series of pulses in the time 
domain yields a number of frequency harmonics common in oscillator circuit designs 
using nonlinear devices. 

The peak amplitude of the output current, the harmonic content defined as 







)(
)(

1 xI
xI N , and 

the DC offset voltage are calculated analytically in terms of the drive level, as shown in 
Table 6-1.  It gives good insight of the nonlinearities involved in the oscillator design.  
 

Table 6-1   For T=300 K, data are generated at a different drive–level. 
Drive level 

[x] 
Drive-Voltage 

[
q

kT
*x] mV 

Offset-
Coefficient 

ln[I0(x)] 

DC-Offset 

)]([ln 0 xI
q

kT

mV 

Fundamental 
Current 

2[I1(x)/I0(x)] 

Second-
Harmonic 
[I2(x)/I1(x)] 

0.00 0.000 0.000 0.000 0.000 0.000 
0.50 13.00 0.062 1.612 0.485 0.124 
1.00 26.00 0.236 6.136 0.893 0.240 
2.00 52.00 0.823 21.398 1.396 0.433 
3.00 78.00 1.585 41.210 1.620 0.568 
4.00 104.00 2.425 63.050 1.737 0.658 
5.00 130.00 3.305 85.800 1.787 0.719 
6.00 156.00 4.208 206.180 1.825 0.762 
7.00 182.00 5.127 330.980 1.851 0.794 
8.00 208.00 6.058 459.600 1.870 0.819 
9.00 234.00 6.997 181.922 1.885 0.835 
10.00 260.00 7.943 206.518 1.897 0.854 
15.00 390.00 12.736 331.136 1.932 0.902 
20.00 520.00 17.590 457.340 1.949 0.926 

 
From the table above, the peak current 2[I1(x)/I0(x)] in column 5 approaches 1.897Idc for 
a drive level ratio x=10. 

 

for T=300K, mV
q

kT
26=       (6-98) 

 
and mVV 2601 = for  x=10     (6-99) 

 

The second harmonic-distortion [63] 
)(
)(

1

2

xI
xI  is 85% for a normalized drive level of x=10 

and the corresponding DC offset is 205.518mV.  When referring to the amplitude, x is 

always meant as normalized to 
q

kT .  Figure 6-10 is generated with the help of Math-
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CAD, and shows the plot of the normalized fundamental and second harmonic current 
with respect to the drive level.  
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Figure 6-10   Plot of the normalized fundamental current 2I1(x)/I0(x) and second harmonic I2(x)/I1(x) with 
respect to the drive level x. 
 
One can notice that as the drive level x increases, the fundamental 2I1(x)/I0(x) and 
harmonic I2(x)/I1(x) increases monotonically.  Figure 6-11 shows the plot of the 
coefficient of offset )]([ln 0 xI with respect to drive level x so that the DC offset voltage 

can be calculated at different temperatures by simply multiplying the factor 
q

kT  [61].   

0

5

10

15

20

0 5 10 15 20

X

ln
[I0

(x
)]

 
Figure 6-11   Plot of )]([ln 0 xI Vs drive level X. 

 
At T= 300K the DC voltage shift is - mVxI )]([ln26 0   

 
for x=10       (6-100) 

 

)(ln 0 xI
q
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VV dcQdc −=      (6-101) 

2[I1(x)/I0(x)] 

I2(x)/I1(x) 



 

74  

 

mVxI
q

kT
V offsetdc 206)(ln 0 ==−     (6-102) 

 
dcQV  and offsetdcV −  are the operating bias points and DC offsets due to an increase in the 

drive level.  The DC voltage shift at x=10 is 206mV.  Figure 6-12 shows the shape of the 
output current with respect to the drive level and demonstrates that as the drive level 
increases, the output current pulse width becomes shorter and the peak current amplitude 
becomes greater. 
  

0)( 10 →=xe ti ,  For conduction angle ≥600    (6-103) 

 

0)( 5 →=xe ti ,  For conduction angle ≥900    (6-104) 

 

0)( 2 →=xe ti , For conduction angle >1800    (6-105) 
 
The harmonic content trade-off is an important consideration in reducing the noise 
content by using shorter current pulses [64-67].  
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Figure 6-12  Plot of current with respect to conduction angle- (wt) and drive level X. 

 
The designer has a limited control over the physical noise sources in a transistor.  He can 
only control the device selection and the operating bias point. However, knowing the bias 
level, the designer is able to substantially improve the oscillator phase noise by reducing 
the duty cycle of the current pulses and in turn reducing the conduction angle of the 
current. 
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From the equation above, it can be seen that the emitter current )cos()( wtxkT

qV

se eeIti
dc

=  is 
proportional to )cos(wtxe  to any fixed drive value of x.  The output current is normalized 
with respect to xe  for the purpose of plotting the graph. Figure 6-13 shows the 
dependence of the conduction angle with respect to the drive level over one cycle of the 
input drive signal )cos(11 wtVv = . 
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Figure 6-13   Plot of conduction angle vs. drive level 
 
Note that for small values of x, the output current is almost a cosine function as expected. 
However, as the drive level x increases, the output current becomes pulse-like and most 
of the portion of the cycle is non-conducting; there will be only negligible current during 
the time between these current pulses.  Therefore, aside from thermal noise, the noise 
sources that depend on the transistor on-current, such as shot noise, partition noise, and 
1/f noise, exist only during the conducting angle of the output current pulses. The 
operation of the oscillator will cause the current pulse to be centered on the negative peak 
of the output voltage because of the 180° phase shift between base and collector.  If the 
current pulse, and consequently the noise pulse, is wide, it will have a component which 
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contributes a substantial amount of phase noise.  If the drive level is increased, the 
current/noise pulses will become narrower, and therefore, have less PM noise 
contribution than wider conduction angle-pulses.  This is nicely seen in Figure 6-20. 
 
Due to the exponential nature of )(tie , it is not possible to define a conduction angle for 
these pulses in a conventional sense, however, we may define a special conduction angle 

as the angular portion of the cycle for which x

wtx

e
e )cos(

 ≥ 0.05 for which a solution for ϕ is 

derived.  

05.0
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The plot of the conduction angle 2ϕ vs. drive level is shown in Figure 6-13.  When the 
drive level increases above x = 2, the overall current wave shapes rapidly change from 
cosinusoidal to impulse-shaped and cause a DC bias shift.  This effectively aids the signal 
by shutting the base-emitter junction off for a good portion of the cycle, and thereby 
makes the conduction angle of the output current narrower.  This analysis is valid for the 
intrinsic transistor.  In practice all parasitics need to be considered. 
 
Figure 6-14 is the oscillator circuit for the calculation of start-up and sustained condition. 
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Figure 6-14   General topology of  oscillator. 



 

77  

The bipolar transistor is represented by a current source and an input conductance at the 
emitter for easier analysis of the reactance transformation.  For easier calculation of the 
capacitive transformation factor n, the oscillator circuit is rearranged as shown in Figure 
6-15 [68]. 
 

 
 

Figure 6-15   Equivalent oscillator circuit for the analysis of the transformed conductance seen by the 
current source.    
 
                                                          
αIe and Y21 are the current source and large-signal transconductance of the device given 
by the ratio of the fundamental-frequency component of the current to the fundamental-
frequency of the drive voltage. 
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x = normalized drive level from (6-87) 
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The ratio of the large-signal and small-signal transconductance as a function of drive 
level is given in the Table 6-2, and its graph is plotted in Figure 6-16. 
 
 

Table 6-2  Plot of Gm(x)/gm=2[I1(x)/xI0(x)] vs. the drive level=x. 

Drive level :x 
 

Gm(x)/gm=2[I1(x)/xI0(x)] 

0.00 1 
0.50 0.970 
1.00 0.893 
2.00 0.698 
3.00 0.540 
4.00 0.432 
5.00 0.357 
6.00 0.304 
7.00 0.264 
8.00 0.233 
9.00 0.209 
10.00 0.190   
15.00 0.129 
20.00   0.0975 

 
 

Gm(x)/gm:Large-signal transconductance/Small-signal transconductance
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Figure 6-16   Plot of Gm(x)/gm=2[I1(x)/xI0(x)] vs. drive level =x. 
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The voltage division for transformation purpose is computed with respect to cbV (voltage 
from collector to base) because the current source is connected from the collector to the 
base. The quality factor of the tuned circuit is assumed to be reasonably high for the 
calculation of the impedance transformation, and finally the current source, which is 
connected from collector to base, will see a total conductance Gtotal. The oscillator circuit 
with passive component parameters is shown in Figure 6-17. 
 

 
Figure 6-17   Oscillator circuit with the  passive components Y1, Y2, and Y3.  The equivalent circuit is 
shown in Figure 8-12. 
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2G = loss parameter/load conductance of the resonator connected parallel to the resonator 

component C1, C2 and L, respectively. 
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3G = conductance of  the bias resistor placed across C2, 1/RL in Figure 6-17. 
 
The large-signal transconductances Y21 and G1 are transformed to the current source 

through the voltage divider 
cb

eb

V
V .   The voltage Veb must be added to Vce to calculate the 

transformation ratio, which can be written as 
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The conductance G2 is already in parallel with the current source so it remains 
unchanged.  The factor n represents the ratio of the collector-base voltage to the emitter-
base voltage at the oscillator resonance frequency. 
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G2 remains constant 

       
The transformed conductance is proportional to the square of the voltage ratios given in 
Eq. 6-121 and Eq. 6-122, producing a total conductance as seen by the current source at 
resonance as 
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For sustained oscillation, the closed loop gain at resonance is given as 
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α is assumed to be 0.98 and variation in the value of α, does not influence the expression 
above greatly. Rearranging the device conductance and circuit conductance, the general 
oscillator equation, after multiplying (6-126) with n on both sides, is written as 
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From the quadratic equation above, the value of the factor n can be calculated, and 
thereby, an estimation of the capacitance can be done a priori. To ensure higher loop 
gain, 1n  is selected from n[ 21 , nn ]. 
 
Once the value of n is fixed, then the ratio of the capacitance is calculated as 
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If 3G and 1G are zero then the above quadratic equation is reduced to 
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From equation (6-135) and (6-138) 
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For a relatively optimum phase noise, the drive level has to be adjusted in such a way that 
the output current pulse is conducting for a short period without appreciably increasing 
the harmonic content.  Section 8 will show the absolute best phase noise operating point. 
 
From equation (6-117) follows        
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From equation (6-142)         
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From equation (6-143) and (6-144)       
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From equation (6-119)          
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large values of x and C2 <C1, n>1, the dependency of x can be expressed as  
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For large drive level, 2Cx ∝ , and the corresponding conduction angle of output current is 
given as 
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Normally, the value of C1 is kept fixed to avoid loading by the transistor. By increasing 
the value of C2, the conduction angle can be reduced, thereby shortening the output 
current pulse. Any change in designed frequency, due to the variation of C2, can be 
compensated by changing the value of the resonator inductance without much change of 
the value of the drive level x. 
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The following shows an example for a 100 MHz and a 1 GHz oscillator circuit for 
different normalized drive levels x.  This is provided to give some insight into the 
relationship between the drive level, the current pulse, and the phase noise.  
 
Figure 6-18 shows the circuit diagram of a 100 MHz Colpitts oscillator with a load of 
500Ω.  The reason for selecting 100 MHz is because the transistor parasitics do not play a 
major role at such a low frequency.  For this example, a NEC 85630 transistor has been 
selected.  The emitter to ground capacitor determines the normalized drive level x.  As 
the drive level x produces narrow pulses, the phase noise improves.  This can be seen n 
Figure 6-19.   
 

 
 

Figure 6-18   Schematic of a 100 MHz reference oscillator. 
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Figure 6-19   Single sideband phase noise as a function of the normalized drive level x. 

 
The collector current plotted in Figure 20 becomes more narrow as the normalized drive 
level x moves towards x = 20.  At the same time, the base-emitter voltage swing 
increases.  This is plotted in Figure 6-21.   
 

 
Figure 6-20   Shows the collector current pulses of the 100 MHz oscillator. 
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Figure 6-21  RF voltage Vbe across the base-emitter junction as a function of the normalized drive level x. 
 
Now, moving to the 1000 MHz oscillator and using the BFP520, which has a much 
higher cut-off frequency, we will evaluate the same conditions.  Figure 6-22 shows the 
1000 MHz oscillator and Figure 6-23 shows the collector pulses as a function of the 
normalized drive.   

 
Figure 6-22  Test oscillator at 1000 MHz. 



 

87  

 
 

Figure 6-23 Collector current pulses as a function of the normalized drive level x. 
 
There already is some ringing at the negative current of the collector.  The base-emitter 
voltage, based on the tuned circuit, remains less distorted as shown in Figure 6-24.  The 
change of phase noise in this case for close-in phase noise, is no longer that dramatic, but 
at frequencies above 100 kHz from the carrier, there is a big difference in the phase noise.  
This can be observed in Figure 6-25. 
 

 
Figure 6-24    Shows the base emitter RF voltage of the normalized drive level x.   
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Figure 6-25   Simulated SSB phase noise as a function of the normalized drive level x. 

 
 
Tables 6-3 and 6-4 show the drive level for different values of C2 for a 100 MHz and 
1000 MHz oscillator. 
 

 
Table 6-3   Drive level for different values of C2 for a 100MHz Oscillator. 

Drive level: x C1 C2 L Phase Noise 
@10KHz 

offset 

Frequency 
 

3 500pF 50pF 80nH -98dBc/Hz 100MHz 
10 500pF 100pF 55nH -113dBc/Hz 100MHz 
15 500pF 150pF 47nH -125dBc/Hz 100MHz 
20 500pF 200pF 42nH -125dBc/Hz 100MHz 

 
 
Table 6-4   Drive level for different values of C2 for a 1000 MHz Oscillator. 

Drive level: x C1 C2 Cc L Phase 
Noise 

@10KHz 
offset 

Frequency 
 

4 50pF 5pF 10pF 6nH -68dBc/Hz 1000MHz 
8 50pF 10pF 6.5pF 6nH -72dBc/Hz 1000MHz 
12 50pF 15pF 5.7pF 6nH -75dBc/Hz 1000MHz 
18 50pF 20pF 5.4pF 6nH -77dBc/Hz 1000MHz 
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Now, a further look at the phase noise will be performed.  Figure 6-26 shows the plot of 
the output current of the 100 MHz oscillator circuit for x=15.  The ringing of the current 
at the off-portion of the device is due to the device parasitic. 
 

 
Figure 6-26  Shows the collector current pulses at a normalized drive level x=15. 

 
Figure 6-27 shows the same oscillator circuit frequency scaled to 10 MHz and Figure 
6-28 at 1000 MHz to verify the parasitic and packaging effect at higher frequency. At low 
frequencies, the device parasitics do not have much influence compared to higher 
frequencies.  The noise current for the 10 MHz oscillator during off-cycle has little 
variation and more or less is the same throughout the off-window.  The noise currents for 
the 100 MHz and 1000 MHz oscillators during the off cycle have a large variation in 
magnitude and the variation is more predominant at 1000 MHz.  The root cause of the 
phase noise lies in the noise sources of the active device used in the oscillator. Shot noise, 
burst noise, thermal noise, and 1/f noise are the major transistor noise sources, and all of 
these noise sources, except thermal noise, exist only when there is current in the device.  
It can be controlled up to some extent by adjusting the duty cycle of the current. The 
basic process responsible for oscillation is due to feedback, and uses a resonant circuit in 
which a series of periodic current pulses charge the tuned circuit. Between each charging 
pulse, the bipolar transistor conducts zero current and is considered off.  The phase noise 
is produced depending on the shape of the current pulse when the transistor is on. If the 
current is a relatively narrow pulse, existing for a very short time, there will be less phase 
noise produced than from a wider pulse. 
 
The simulated results support Lee and Hajimiri’s theory [64-67], which states that 
narrowing the current pulse width will decrease phase noise. It is important to understand 
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that the optimum drive level will generate higher harmonics and the device may go into 
saturation, which will degrade the phase noise performance.   Lee and Hajimiri’s theory 
[64-67] does not emphasize the optimum phase noise at a given power output which is a 
strong function of ratio and absolute value of the feedback capacitors at given drive level 
and resonator Q.  Appendix B shows a numerical example. 

 

 
Figure 6-27   Collector current for a 10 MHz LC oscillator at a normalized drive level x=15.  The ringing 
shown is due to the harmonic content. 

 

 
Figure 6-28 Collector  current at a normalized drive level x=15.  At the peak values, the third harmonic 
becomes a contributing factor (a dip in the curve) and there is a negative collector current. 



 

91  

7 Noise in Oscillators 
 
Section 6 and Appendix A derive all the necessary equations that are needed to design 
power-optimized microwave oscillators.  While the concept of noise was already 
mentioned before, oscillator noise theory will be dealt with here and the design for best 
phase noise will be derived.  The noise in an oscillator is determined by the noise (losses) 
of the resonator and the noise contributions of the active device.  The noise of the 
transistor comes from several sources, and the derivation of the noise theory is found in 
Appendices B, C, and D.  In the English language, frequently, there is no clear difference 
between the noise figure in logarithm terms and absolute terms.  The noise figure is 
defined as   
 

NF = 10 × log(F) 
 

The equations in the appendix, therefore, correctly refer to the noise factor, F, instead of 
the noise figure NF as typically quoted.   
 
The best signal-to-noise ratio a system can have is the available output power (in dBm) 
divided by the noise floor (also in dBm).  The resulting noise figure is a strong function 
of the source impedance, which differs from the optimal noise impedance.  The optimum 
noise source calculation is also provided in Appendix D.  While the oscillator is a 
nonlinear circuit, noise theory is assumed to be linear.  This means that the noise 
mechanism in an oscillator has to be treated under steady-state conditions, at points of the 
RF current and voltage waveforms.  There will be an average noise figure as a result of 
this.  Computation of the noise in a system such as an oscillator is best done using the 
noise correlation matrix approach.  Since the noise itself consists of small currents and 
voltages, one can begin to describe the noise of an oscillator using the linear approach.   
 
7.1 Linear Approach to the Calculation of Oscillator Phase Noise 

 
Since an oscillator can be viewed as an amplifier with feedback as shown in Figure 2-1, it 
is helpful to examine the phase noise added to an amplifier that has a noise factor F. With 
F defined as 
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where Nin is the total input noise power to a noise-free amplifier. The input phase noise in 
a 1 Hz bandwidth at any frequency f0 + fm from the carrier produces a phase deviation 
given by Figure  7-2. 
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Figure 7-1   Noise power versus frequency of a transistor amplifier with an input signal applied. 

 
 

 
 

Figure 7-2    Phase noise added to the carrier. 
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Leeson’s Approach  
 
Since a correlated random phase noise relation exists at f0 − fm, the total phase deviation 
becomes 
 

savPFkT /RMStotal =∆θ        (SSB)    (7-6) 
 
The spectral density of phase noise becomes 
 

( ) sav
2
RMS / PFkTBfS m =∆= θθ     (7-7) 

 
where B = 1 for a 1 Hz bandwidth. Using 
 

dBm 174−=kTB  (B = 1 Hz, T = 300K)  (7-8) 
 
allows a calculation of the spectral density of phase noise that is far away from the carrier 
(that is, at large values of fm). This noise is the theoretical noise floor of the amplifier. For 
example, an amplifier with +10 dBm power at the input and a noise figure of 6 dB gives 
 

( ) dBm 178dBm 10dB 6 dBm 174 −=−+−=> cm ffSθ   (7-9) 
 
Only if Pout is > 0 dBm can we expect  (signal-to-noise ratio) to be greater than 
174 dBc/Hz (1 Hz bandwidth.) For a modulation frequency close to the carrier, Sθ (fm) 
shows a flicker or 1/f component, which is empirically described by the corner frequency 
fc. The phase noise can be modeled by a noise-free amplifier and a phase modulator at the 
input as shown in Figure 7-3. 
 

 
Figure  7-3    Phase noise modeled by a noise free amplifier and phase modulator. 

Psav 
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The purity of the signal is degraded by the flicker noise at frequencies close to the carrier. 
The phase noise can be described by 
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No AM-to-PM conversion is considered in this equation. The oscillator may be modeled 
as an amplifier with feedback as shown in Figure 7-4.  
  
The phase noise at the input of the amplifier is affected by the bandwidth of the resonator 
in the oscillator circuit in the following way.  The tank circuit or bandpass resonator has a 
low pass transfer function 
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where 
 

2/22/0 BQL πω =      (7-12) 
 
is the half bandwidth of the resonator. These equations describe the amplitude response 
of the bandpass resonator; the phase noise is transferred unattenuated through the 
resonator up to the half bandwidth [70-72]. 
 

 
 

Figure 7-4    Equivalent feedback models of oscillator phase noise. 



 

95  

The closed loop response of the phase feedback loop is given by 
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The power transfer becomes the phase spectral density 
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where Sθ in was given by Eq. (7-10).  Finally, £(fm), which is the single sideband phase 
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This equation describes the phase noise at the output of the amplifier (flicker corner 
frequency and AM-to-PM conversion are not considered). The phase perturbation S?in at 
the input of the amplifier is enhanced by the positive phase feedback within the half 
bandwidth of the resonator, f0/2QL. 
 

 
Figure 7-5   Equivalent feedback models of oscillator phase noise. 

 
Depending on the relation between fc and f0/2QL, there are two cases of interest, as shown 
in Figure 7-5. For the low Q case, the spectral phase noise is unaffected by the Q of the 
resonator, but the £ (fm) spectral density will show a 1/f 3 and 1/f 2 dependence close to the 
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carrier. For the high Q case, a region of 1/f 3 and 1/f should be observed near the carrier.  
Substituting Eq. (7-10) in (7-15) gives an overall noise of 
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 (7-16) 
 
Examining Eq. (7-16) gives the four major causes of oscillator noise: the up-converted 1/f 
noise or flicker FM noise, the thermal FM noise, the flicker phase noise, and the thermal 
noise floor, respectively. 
 
QL (loaded Q) can be expressed as 
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where We is the reactive energy stored in L and C, 
 

2
2
1 CVWe =       (7-18) 
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 (7-20) 
 

More comments on the Leeson formula are found in [70, 109, 161]. The practical 
oscillator will experience a frequency shift when the supply voltage, is changed.  This is 
due to the voltage and current dependent capacitances of the transistor.  To calculate this 
effect, we can assume that the fixed tuning capacitor of the oscillator is a semiconductor 
junction, which is reverse biased.  This capacitor becomes a tuning diode.  This tuning 
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diode itself generates a noise voltage and modulates its capacitance by a slight amount, 
and therefore modulates the frequency of the oscillator by minute amounts.  The 
following calculates the phase noise generated from this mechanism, which needs to be 
added to the phase noise calculated above. 
 
It is possible to define an equivalent noise Raeq that, inserted in Nyquist’s equation,  
 
     fRkTV aeqon ∆= 4      (7-21) 

 
where kTo = 4.2 × 10-21 at 300 K, R is the equivalent noise resistor, and ∆f is the 
bandwidth, determines an open noise voltage across the tuning diode.  Practical values of 
Raeq for carefully selected tuning diodes are in the vicinity of 100Ω, or higher.  If we now 
determine the voltage ,100102.44 21 ×××= −

nV  the resulting voltage value is 
1.265 × 10-9 V .Hz  
 
This noise voltage generated from the tuning diode is now multiplied with the VCO gain, 
resulting in the rms frequency deviation: 
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In order to translate this into the equivalent peak phase deviation, 
 

)10265.1(
2 9 rad

f
K

m

o
d

−×=θ in 1 Hz bandwidth   (7-23) 

 
or for a typical oscillator gain of 10 MHz/V,  
 

m
d f

00179.0
=θ  rad in 1 Hz bandwidth   (7-24) 

 
For fm= 25 kHz (typical spacing for adjacent channel measurements for FM mobile 
radios), the θd = 7.17 × 10-8.  This can be converted into the SSB signal-to-noise ratio 
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(7-25) 
= −149 dBc/Hz       

 
Figure 7-6 shows a plot with an oscillator sensitivity of 10 kHz/V, 10 MHz/V, and 
100 MHz/V.  The center frequency is 2.4 GHz.  The lowest curve is the contribution of 
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the Leeson equation.  The second curve shows the beginning of the noise contribution 
from the diode, and the third curve shows that at this tuning sensitivity, the noise from the 
tuning diode by itself dominates as it modulates the VCO.  This is valid regardless of the 
Q.  This effect is called modulation noise (AM-to-PM conversion), while the Leeson 
equation deals with the conversion noise.   
 

 
 

Figure 7-6   Simulated phase noise following Eq. (7-26). 
 
If we combine the Leeson formula with the tuning diode contribution, the following 
equation allows us to calculate the noise of the oscillator completely.  
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where  
 

£(fm) = ratio of sideband power in a 1 Hz bandwidth at fm to total power in dB 
fm = frequency offset 
f0 = center frequency 
fc = flicker frequency 
QL = loaded Q of the tuned circuit 
F = noise factor 
kT = 4.1 × 10−21 at 300 K0 (room temperature) 
Psav = average power at oscillator output 
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R = equivalent noise resistance of tuning diode (typically 50 Ω - 10 kΩ) 
Ko = oscillator voltage gain  

 
The limitation of this equation is that the loaded Q in most cases has to be estimated and 
the same applies to the noise factor.  The microwave harmonic-balance simulator, which 
is based on the noise modulation theory (published by Rizzoli), automatically calculates 
the loaded Q and the resulting noise figure as well as the output power [73].  The 
following equations, based on this equivalent circuit, are the exact values for Psav, QL, and 
F which are needed for the Leeson equation.  This approach shown here is novel.  It 
calculates the output power based on the Eqs. (8-66) to (8-76).  The factor of 1000 is 
needed since the result is expressed in dBm and a function of n and C1. 
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0.7 = high current saturation voltage, Vce collector emitter voltage <Vcc 

 
To calculate the loaded QL, we have to consider the unloaded Q0 and the loading effect of 
the transistor.  There we have to consider the influence of Y21

+.  The inverse of this is 
responsible for the loading and reduction of the Q. 
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Based on Figure 8-7, which also shows the transformation of the loading of the 
differential emitter impedance (resistance), we can also calculate the noise factor of the 
transistor under large-signal conditions.  Considering Y21

+, this noise calculation, while 
itself uses a totally new approach, is based on the general noise calculations such as the 
one shown by Hawkins [117] and Hsu and Snapp [118].  An equivalent procedure can be 
found for FET’s rather than bipolar transistors. 
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When adding an isolating amplifier the noise of an LC oscillator system is determined by 
 

[ ]
( ) ( )( )[ ]

( )

S f a F a F Q f

GFkT P F Q f

a Q F f

a f GFkT P

m R E L m

L m

R L m

E m

φ ( ) ( / ( )) /

/ / /

/

/ /

= +

+

+

+ +

0
4

0
2 3

0 0

2 2

0
3 2

0

2

2 2

2

2

   (7-30) 

 
where 
 
 G = compressed power gain of the loop amplifier 
 F = noise factor of the loop amplifier 
 k = Boltzmann's constant 
 T = temperature in Kelvins 
 P0 = carrier power level (in watts) at the output of the loop amplifier 
 F0 = carrier frequency in Hz 
 fm = carrier offset frequency in Hz 
 QL= (πF0τg) = loaded Q of the resonator in the feedback loop 

aR and aE = flicker noise constants for the resonator and loop amplifier,  
respectively. 
[74] 
 

It is important to understand that the Leeson model is the best case since it assumes the 
tuned circuit filters out all the harmonics.  In all practical cases, it is hard to predict the 
operating Q and the noise figure.  When comparing the measured results of oscillators 
with the assumptions made in Leeson’s equation, one frequently obtains a de facto noise 
figure in the vicinity of 20 to 30 dB and an operating Q that is different than the assumed 
loaded Q.  Attempting to match the Leeson calculated curve and measured curve requires 
totally different values than those assumed. The basic concept of the Leeson equation, 
however, is correct, and if each of the three unknown terms are inserted properly, the 
computed results will agree with the measurements.  The information that is not known 
prior to measurement is: 
 

a) the output power, 
b) the noise figure under large-signal conditions, and 
c) the loaded (operational) noise figure. 

 
Example:   
 
The following is a validation example for this approach.    
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For an output power of 13 dBm, C1 = 3.3pF, C2 = 2.2pF, Y21
+ = 2mS, Q0 = 1000, 

Q+ = 618 loading from the transistor, the resulting noise factor is 104 or roughly 20 dB, 
and the total loaded Q is 380.  Figure 7-7 shows the phase noise, including the flicker 
corner frequency of 10 kHz.  This is one way of calculating the phase noise.  The result is 
very close to the CAD simulations and measurements, but is incomplete because many 
transistor parameters are not considered, which would increase the accuracy.  The 
formula, however, does not allow us to enter more parameters.  
  

 
Figure 7-7  Predicted phase noise for an oscillator using the values above.  It agrees well with actual 
measurements. 
 
7.2 Phase Noise Measurements 
 
The single-sideband phase noise of an oscillator has been the subject of many 
discussions, but how can it be measured?   
 
Spectrum Analyzer 
 
The first and most simple approach is to use a spectrum analyzer which has a sufficiently 
low phase noise oscillator.  The phase noise is measured on the screen as a function of the 
offset off the carrier.  Modern spectrum analyzers, such as the Rohde & Schwarz FSU 
series, have a carrier phase noise option built-in.  The phase noise is measured in a 
normalized 1 Hz bandwidth.  A bandwidth of 1 Hz is at best realizable in a DSP-based IF 
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stage, but then the measurement time would be huge.  A better way to do this is to adjust 
the bandwidth to be approximately 10% or more off the carrier.  As example, when 
measuring at 100 Hz off the carrier, 10 Hz bandwidth should be used, and at 100 kHz off 
the carrier, a wider bandwidth, such as 10 kHz, can be used.  Most analyzers have an 
intelligent built-in option (program) which automatically selects the proper sweep speed 
and bandwidth for this purpose.  Since all high performance spectrum analyzers have 
synthesized local oscillators with wide loop bandwidths, the phase noise of the analyzers 
at frequencies deviations of about 10 kHz typically exceed the performance of the device 
under test.  High Q oscillators become a problem because they can have better phase 
noise performance than the spectrum analyzer.  Crystal oscillators, ceramic resonator 
oscillators, SAW oscillators, and dielectric resonator oscillators fall into this category. 
 
Phase Noise Test Setup 
 
There are several phase noise test setups available on the market.  The best instruments 
known are made by Agilent (Hewlett-Packard) and Komstron (EuroTest).  Figure 7-8  
shows the popular Hewlett-Packard phase noise setup.   

 
Figure 7-8   Model 3048A -based phase noise test setup. 

 
This system consists of a base unit with a phase detector and amplifier, several signal 
generators, and a DC output.  The test setup shown above is configured to determine the 
minimum noise floor of the system to make sure there is enough dynamic range.  This is 
accomplished by taking the output of one of the built-in signal sources, splitting the 
power and feeding the outputs into the built-in high-level double-balanced mixer. One of 
the outputs is delayed in phase by the delay line shown on the left side of the picture.  As 
a result of this, the double balanced mixer receives the identical frequency into the RF 
and LO input, and there is a phase difference between both signals.  Because there is no 
difference in frequency between the two signals, the resulting output is a DC voltage with 
the signal generator’s noise on top of it.  Because of the conversion to zero IF, the 
analyzer connected to the output needs to cover DC (10 Hz or less) to 1 - 10 MHz to 
analyze the noise.  Since there are no requirements for linearity for the mixing process, 
the RF levels, both of the RF and LO input, can be the same.   
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Using an FFT analyzer, Figure 7-9 shows the noise floor of the system.  This is true 
because the signal source in question is a high performance crystal oscillator with a much 
better phase noise performance than any practical device under test (DUT).  
 

 
 

Figure 7-9   HP3048A noise floor performance test results.  
 

Figure 7-10 shows the block diagram of the test setup with a small modification.  Instead 
of having one oscillator with a power splitter and a delay line, it uses two separate 
oscillators.  This is commonly used to measure medium quality oscillators.  As long as 
signal generator 1 is at least 10 dB better than signal generator 2, this approach is valid.  
If both signal generators are identical, than there would be a 3 dB correction factor.  It is 
good practice to synchronize oscillator 1 against the oscillator 2.  The phase noise setup 
system shown above has several frequency standards built-in.  The high quality 10 MHz 
reference oscillator output can be used to synchronize oscillator 1, if this a synthesized 
signal generator.  This is valid in most cases.  If oscillator 2 is a VCO, the test setup 
provides a DC control voltage, which can phase lock oscillator 2 in the system.  
Depending on the measurement offset, the system adjusts the loop bandwidth. 
 
Both systems have their plus and minuses. The delay line principle is limited by the 
delay, which is a sine x/x function that repeats.  The delay line measurement system 
requires several delay lines to cover a wide range of measurements.  More details about 
the limitation of the cable measurement can be found in the system reference manual.   
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Figure 7-10   Block diagram of the principle of the HP3048A system.  There is an additional DC FM 
feedback loop to phase lock one of the oscillators. 
 
Figure 7-11 shows the area for which the delay line measurements are valid.  This is 
frequency dependent and of course depends on the length of the delay line.   

 

 
 

Figure 7-11  Display of a typical phase noise measurement using the delay line principle. This method is 
only applicable where x ˜ sin(x). The measured values above the solid line violate this relationship, and 
therefore are not valid. 
 
By choosing the appropriate delay length the dynamic range can be controlled.  As an 
example, the 1µS delay line is ideal for most microwave frequencies.  The limit of 
-160 dBc/Hz was due to the system’s performance.  This can bee seen in Figure 7-12.   A 
longer delay line, which is mechanically very bulky and lossy, allows measurements 
closer in with better resolution.  The delay line ideally is adjustable, which guarantees to 
make small phase changes since the signal fed to the mixer should be in quadrature 
compared to the other input.  A more detailed description can be found in the system’s 
manual [81]. 
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Figure 7-12   Dynamic range as a function of cable delay. 1 µs is ideal for  microwave frequencies. 
 
 
In the case of the two-oscillator (signal generator) measurement, the typical problem is 
that the synthesized signal generator is not always as good as the high Q oscillators under 
test.  While for most cases the setup with one signal generator and the device under test is 
sufficient, the additional delay line should be available to have a complete system.   
 
The measurements shown in this work were taken with the Hewlett-Packard 3048A and 
the Euro Test system.  Figure 7-13 shows a picture of the test station, which houses both 
systems. 
 

 
 

Figure 7-13    Synergy Microwave Corp. in-house automated test system to measure oscillator phase 
noise. 
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8 Calculation and Optimization of Phase Noise in Oscillators 
 
8.1 Introduction 

This section develops the computation for the noise properties of an oscillator and a 
design guide for best performance will be given.   Two methods will be chosen.  One is 
the calculation of a time-domain dependent negative resistance that is necessary to enable 
and sustain oscillation.  A bias-dependent noise calculation is possible from this 
approach.  The second approach is a loop gain approach in which the oscillator is 
considered a closed loop.  This allows for the calculation of the impact of the various 
noise sources in the transistor, a bipolar transistor. 

8.2 Oscillator Configurations 

The most relevant circuit configuration used for microwave applications is the Colpitts 
oscillator with a parallel tuned circuit operating in an inductive mode as shown in Figure 
8-1.     

 
Figure  8-1   Shows a parallel-tuned Colpitts oscillator.   
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8.3 Oscillator Phase Noise Model for the Synthesis Procedure 
 

Device Phase Noise 
 

Phase noise in an active device is generated by white additive noise as well as by shot 
noise. 
 
1. For white additive noise, the power spectral density is flat with the frequency. For 

a device having a noise factor of  F, the half sided power spectral density of the 
phase noise is given as  

 

sP
FkT

S =∆ )(ωθ        (8-1) 

 
Where k is a Boltzman’s constant, T is absolute temperature and Ps is the signal 
level at the active device input. 

 
2. For shot noise, the power spectral density of the phase noise representation varies 

inversely with frequency, and is given by 
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where Kα is a constant.  
 

3. The total power spectral density of the input phase error can then be written as 
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For small phase deviations at a frequency offset less than the resonator half 
bandwidth ω0/2Q, a phase error at the input to the active element of the oscillator 
results in a frequency error. This frequency error is determined by the phase 
frequency relationship of the feedback network. 
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Case 1 
 
For noise modulation rates less than the half bandwidth of the feedback loop, the 
spectrum of the frequency error is identical to the spectrum of the oscillator input phase 
noise, )(ωθ∆S . The spectrum of the phase error can be given as 
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Case 2  
 
For noise modulation rates large compared to the half bandwidth of the feedback loop, 
the series feedback is not effective, and the power spectral density of the output phase, 

)(ωϕS is identical to the spectrum of the oscillator input phase noise, )(ωθ∆S . 
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A composite expression for the power spectral density of the output phase is  
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The phase noise can be described as a short-term random frequency fluctuation of a 
signal which is measured in the frequency domain, and is expressed as a ratio of signal 
power to noise ratio measured in a 1 Hz bandwidth at a given offset from the desired 
signal frequency. 
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The term 
ω

aK  is typically omitted in the phase noise equations, specifically, derivatives of 

the Leeson equation. 
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8.4 Phase Noise Analysis Based on the Negative Resistance Model 
 
The following noise analysis for the oscillator, while based on the approach of  
Kurokawa [82], is an attempt to introduce the concept of a “noisy” negative resistance, 
which is time dependent.  Kurokawa, addressing the question of synchronized oscillators, 
provided insight in the general case of a series oscillator.  The method introduced here is 
specific for a real oscillator and real noise sources.  
 
This concept gets started by connecting a parallel-tuned circuit to a transistor in Colpitts 
configuration.  Since, the two capacitors C1 and C2 are similar in value, not different by 
more than a factor of 2 or 3 and connected to a parallel-tuned circuit via a small coupling 
capacitor Cc, the output impedance of the emitter follower circuit gets transformed to the 
base.  The differential output impedance at the emitter is 1/Y21

+ (large signal), while the 
input impedance itself is 1/Y21

+
 × β.  Because of this, the contribution of Y11 can be 

neglected for the basic analysis.  This is only valid for this particular case.  Consistent 
with Eq. 6-1, which is based on the same approximation, but includes the parasitics, the 
transistor circuit now provides a negative resistance (or a negative conductance).  This 
negative conductance cancels the losses concentrated in the loss resistor RP, which for 
infinite Q would also be infinite. 
 
Figure 8-2 is a Colpitts oscillator arrangement, simplified for the purpose of showing the 
circuit components.  On the left side we see the resonator tank circuit with the loss 
resistor RP, and on the right side we see the negative conductance, which is time 
dependent.  The time dependence comes from the fact that the collector current is a series 
of pulses and the negative conductance is only present during a small period of time.  
This explanation is necessary to justify the existence of a loaded Q.  If there would be a 
negative resistance or conductance present all the time, the compensating circuit would 
reduce the bandwidth to essentially zero or an infinite Q.  In reality, however, for most of 
the time the transistor “loads” the tuned circuit, and therefore, the operating Q is less than 
the unloaded Q.  Another time-domain noise analysis was shown by Anzill  [80], but is 
not useful for HB simulators. 
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Figure 8-2  Colpitts Oscillator configuration for the intrinsic case, no parasitics assumed, and an ideal 
transistor considered. 
 
The following two circuits show the transition from a series tuned circuit connected with 
the series time-dependent negative resistance as outlined in Eq. 6-1 and the resulting 
input capacitance marked CIN.  Translated, the resulting configuration consists of a series 
circuit with inductance L and the resulting capacitance C'.  The noise voltage eN(t) 
describes a small perturbation, which is the noise resulting from RL and –RN(t).   
 
Figure 8-3 shows the equivalent representation of the oscillator circuit in the presence of 
noise. 

-RN(t)

CIN

RL

L

C -RN(t)

RLL

C'

eN(t)

i(t)

 
 

Figure 8-3    Equivalent representation of the oscillator circuit in presence of noise. 
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The circuit equation of the oscillator circuit of Figure 8-3 can be given as 
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L NNL =+−+ ∫    (8-11) 

 
where i(t) is the time varying resultant current.  Due to the noise voltage eN(t),  Eq. 8-11 
is a nonhomogeneous differential equation.  If the noise voltage is zero, it translates into a 
homogeneous differential equation. 
 
For a noiseless oscillator, the noise signal )(teN is zero and the expression of the free-
running oscillator current i(t) can be assumed to be a periodic function of time and can be 
given as 
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where I1, I2 …..In  are peak harmonic amplitudes of the current and ϕ1, ϕ2…..ϕn are time 
invariant phases. 
 
In the presence of the noise perturbation )(teN , the current i(t)  may no longer be a 
periodic function of time and can be expressed as  
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 (8-13) 
 
where I1(t), I2(t)…..In(t) are time variant amplitudes of the current and ϕ1(t), ϕ2(t)…..ϕn(t) 
are time variant phases. 
 
Considering that In(t) and ϕn(t) do not change much over the period of 2π/nω; each 
corresponding harmonic over one period of oscillation cycle remains small and more or 
less invariant.  The solution of the differential equation becomes easy since the harmonics 
are suppressed due to a Q > 10, which prevents i(t) to flow for the higher terms. 
 

After the substitution of the value of 
dt
di  and ∫ dtti )( , the complete oscillator circuit 

equation, as given in Eq. (8-11), can be rewritten as 
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Because Q > 10 we approximate: 
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After the substitution of the value of 
dt
di  and ∫ dtti )( , the oscillator circuit Eq. (8-14) can 

be rewritten as 
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Following [82], and for simplification purposes, the equations above are multiplied with 

)](sin[ 1 tt ϕω + or )](cos[ 1 tt ϕω +  and integrated over one period of the oscillation cycle, 
which will give an approximate differential equation for phase )(tϕ and amplitude i(t) as  
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where )(tRN  is the average negative resistance under large signal condition.  
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Since magnitude of the higher harmonics are not significant, the subscript of )(tϕ and 

)(tI are dropped.   Based on [82], we now determine the negative resistance. 
 
Calculation of the Region of the Nonlinear Negative Resistance 
 
Under steady-state free running oscillation condition,  
 

0
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implies steady current, and 
 

0)( →teN   
 

with I = fundamental RF current.  Solving the now homogeneous differential equation 
for RL – RN(t) and inserting the two terms into 8-17, we obtain 
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 term → 0 
 

now we introduce γ; γ = 
I
R

∆
∆ ; for ∆→ 0, γ → 0 and  
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0)(])([ →− tItRR NL   gives the intersection of [ ])(tRN and [RL]. This value is defined as I0 

which is the minimum value of the current needed for the steady-state sustained 
oscillation condition. 
 
Figure 8-4 shows the plot of the nonlinear negative resistance, which is a function of the 
amplitude of the RF current.  As the RF amplitude gets larger the conducting angle 
becomes more narrow. 
 

 
Figure 8-4  Plot of negative resistance of [ )(tRN  ] vs. amplitude of Current I. 
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For a small variation of the current ∆I from I0, the relation above is expressed as  
 

ItRR NL ∆=− γ])([      (8-22) 
 
 I∆γ can be found from the intersection on the vertical axis by drawing the tangential line 
on [ )(tRN ] at I = I0.  | I∆ | decreases exponentially with time for γ>0.  
 
Hence, I0 represents the stable operating point. On the other hand, if [ )(tRN ] intersects 
[RL] from the other side for γ<0 then | I∆ | grows indefinitely with time.  Such an 
operating point does not support stable operation [82]. 
 
Calculation of the Noise Signal in Time Domain 
 
From solving the two orthogonal equations, we need to obtain information about current 
I(t) and ϕ(t). 
 









+−+



 +−=+








∫

−
''2

0

11)(
)](sin[)(

2

0
C

L
C

L
dt

td
dtttte

IT

t

Tt
N ω

ω
ω

ϕ
ϕω   (8-23) 

 
 
 

[ ] )()(
1)(

)](cos[)(
2

'2
0 0

tItRR
C

L
dt

tdI
dtttte

T NL

t

Tt
N −+



 +=+








∫

− ω
ϕω   (8-24) 

 
 
The analysis of the noise signal can be accomplished by decomposing the noise signal 
eN(t)  to an infinite number of random noise pulses represented by 
  

)( 0tt −δε       (8-25) 
 
where ε is the strength of the pulse at the time instant t0, and both ε and t0 are independent 
random variables from one pulse to next pulse! 
 
The time average of the square of the current pulses over a period of time can be shown 
to be 
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The mean square noise voltage )(2 teN  is generated in the circuit in Figure 8-3. 
 
Figure 8-5 shows the noise pulse at time instant t = t0 
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Figure 8-5   The noise pulse at t = t0. 
 
The integral of the single noise pulse above gives the rectangular pulse with the height 
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Figure 8-6   The amplitude of the rectangular pulse. 
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The integration of the single elementary noise pulse, following the Dirac ∆ function, 
results in 
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since the length of time T0 is considered to be sufficiently small for any variation of 

)(tϕ and )(tI  during the time T0. The corresponding rectangular pulse of the magnitude 
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ϕωε +  is considered to be another pulse located at t = t0 and can be expressed 

in the form of an impulse function with the amplitude )(sin[2 0 tt ϕωε + located at t = t0 for 
calculating the effect using Eqs. (8-23) and  (8-24). 
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 is given by [n1(t)] which consists of a number of 

rectangular pulses.  The time average of the square of these pulses, following [82], can be 
calculated as 
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 From the equation above    
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which consists of a large number of such pulses and the time average of the square of 
these pulses is  
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 are orthogonal functions, 

and in the frequency domain are the upper and lower side bands relative to the carrier, 
and the correlation of  [n1(t)] and [n2(t)] is 
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Now consider the narrow band noise signal, which is  
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Oscillating signal I0

0ω

eN1(t)

eN2(t)

 
 

Figure 8-7  Vector presentation of the oscillator signal and its modulation by the voltages eN1 and eN2. 
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where )(1 teN and )(2 teN are orthogonal function, and )(1 te and )(2 te are slowly varying 
function of time. 
 
The calculation of )(tIn and )(tnϕ for the free running oscillator can be derived from Eqs. 
(8-23) & (8-24) as 
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at resonance frequency ω = ω0, 
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If Eq. (8-41) is transformed in the frequency domain, )(tϕ can be expressed as 
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Now the spectral density of [ )( fϕ ] is 
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where  f varies from -∞  to + ∞ . 
 
The amplitude of the current can be written as )()( 0 tIItI ∆+= , where I0 represents the 
stable operating point of the free-running oscillator with a loop gain slightly greater 
than 1.   
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From Eq. (8-24) 
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Since the amplitude of )(2 tI∆  is negligible, its value can be set to 0; 
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The spectral density of [ )(2 fn ] is 
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since )(1 tn and )(2 tn  are orthogonal function and there is no correlation between current 
and phase 
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The output power noise spectral density of the current is given as 
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The noise spectral density of the current is given as 
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where )(τIR  is the auto-correlation function of the current and can be written as 
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Since )(tI and )(tϕ  are uncorrelated, auto-correlation function of the current )(τIR can be 
given as 
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From [82], but taking into consideration that both side bands are correlated, we can write 
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Since the publication [82] skipped many stages of the calculation, up to here, a more 
complete and detailed flow is shown.  These results are needed to calculate the noise 
performance at the component level later.  Note, the factor of 2, which results from the 
correlation. 
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with I = I0 + ∆I(t); all RF-currents. 
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for ω→ω0 , FM noise predominates over the AM noise. 
 
For ω>>ω0, both the FM noise and AM noise terms give equal contribution. 
 
Considering ω+ω0>>ω-ω0, then 
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Since oLLoad RRR += , the effective dynamic resistance of the free running oscillator is given by  
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tot RRtRR =−=∑ ])(      (8-66) 

 
 where Ro is the output resistance; R0 – Rtot = 0. 
 
 The Q of the resonator circuit is expressed as  
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The oscillator output noise power in terms of Q is given by 
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Figure 8-8 shows the Colpitts oscillator with a series resonator and the small signal AC 
equivalent circuit.  From the analytical expression of the noise analysis above, the 
influence of the circuit components on the phase noise can be explicitly calculated as 
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where the frequency f varies from -∞ to +∞ . 
 
The resulting single sideband phase noise is  
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The unknown variables are 2)( feN and )(2

0 fI , which need to be determined next.  )(2
0 fI  

will be transformed into )(2
0 fI c  by multiplying )(2

0 tI  with the effective current gain 
Y21

+/Y11
+ = β+. 
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Figure 8-8  Colpitts oscillator with series resonator and small signal AC equivalent circuit. 
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Calculation of )(2
0 fI c  

 
From Figure 8-8, the LC-series resonant circuit is in shunt between the base and the 
emitter with the capacitive negative conductance portion of the transistor.  We now 
introduce a collector load RLoad at the output, or better yet, an impedance Z. 
 
The oscillator base current i(t) is 
 

Z
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and the collector current is 
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The voltage Vce is the RF voltage across the collector-emitter terminals of the transistor.  
Considering the steady-state oscillation ω→ω0, the total loss resistance is compensated 
by the negative resistance of the active device as )(tRR NL = . The expression of 
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


















−+

=









−+








== 2

2
0

2
2

0

2

2

0
0

2

0

2
2
0

1
1

1
)(

)(

1

)(
)(

0

IN

ce

IN

ce
c

LCQ
L

fV

C
L

Q
L

fV
fI

ω
ω

ω
ω

ω
ωω   (8-75) 

 



 

126  



















 +
−+

== 2

21

21
2
0

2
2

0

2
2
0

1
1

1
)(

)(
)(

0

CC
CC

LQ
L

fV
fI ce

c

ω
ω

ωω    (8-76) 

 
where INC  is the equivalent capacitance of the negative resistor portion of the oscillator 
circuit. 
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For a reasonably high Q resonator [ ]
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Calculation of the Noise Voltage )( feN  
 
The equivalent noise voltage from the negative resistance portion of the oscillator circuit 
is given an open-circuit noise voltage [EMF] of the circuit as shown in Figure 8-9 below. 
 

 
 
Figure 8-9   Equivalent representation of negative resistance portion of the circuit at the input for the open 
circuit noise voltage. 
 
The noise voltage associated with the resonator loss resistance Rs is 
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sR kTBRfe 4)(
0

2 ==ωω      (8-79) 

 
Rs denotes the equivalent series loss resistor, which can be calculated from the parallel 
loading resistor Rload , see Figure 8-9. 
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The total noise voltage power within 1 Hz bandwidth can be given as 
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After some lengthy calculations and adding shot noise, flicker noise, the loss resistor, and 
a drive level dependent current gain, we obtain 
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The values of p and q depend upon the drive level. 
 

The flicker noise contribution in Eq. (8-82) is introduced by adding term 
ω∆

AF
bf IK

 in 0cI , 

where Kf is the flicker noise coefficient and AF is the flicker noise exponent.  This is 
valid only for the bipolar transistor.  For an FET, the equivalent currents have to be used. 
 
The first term in the expression above is related to the thermal noise due to the loss 
resistance of the resonator tank and the second term is related to the shot noise and flicker 
noise in the transistor. 
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Now, the phase noise of the oscillator can be expressed as 
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Since the phase noise is always expressed in dBc/Hz, we now calculate, after 
simplification of Eq. (8-86),  
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For the bias condition (which is determined from the output power requirement), the 
loaded quality factor, and the device parameters [transconductance and +β ], the best 

phase noise can be found by differentiating SSB)(2 ωϕ  with respect to 
2

1

C
C . 

 
Considering that all the parameters of SSB)(2 ωϕ  are constants for a given operating 

condition (except the feedback capacitor), the minimum value of the phase noise can be 
determined for any fixed value of C1 as 
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Where k1, k2, and k3, are constant only for a particular drive level, with 
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y = .  Making 

k2 and k3 also dependent on y,  as the drive level changes, the final noise equation is 
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Figure 8-10 shows the simulated phase noise and its minimum for two values of C1, 2pF 
and 5pF.  5pF provides a better phase noise and a flatter response.  For larger C1, the 
oscillator will cease to oscillate.   
 

 
Figure 8-10   Phase noise vs. n and output power. 
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From curve-fitting attempts, the following values for q and p in Eq. 8-94 were 
determined: 
 

q=1 to 1.1; p = 1.3 to 1.6. 
 
q and p are a function of the normalized drive level x and need to be determined 
experimentally. 
 
The transformation factor n is defined as  
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The following plot in Figure 8-11 shows the predicted phase noise resulting from 
Eq. (8-94).  For the first time, the flicker corner frequency was properly implemented and 
gives answers consistent with the measurements.  In the following section all the noise 
sources will be added, but the key contributors are still the resonator noise and the flicker 
noise.  The Shottky noise dominates further out.  The break point for the flicker noise can 
be clearly seen.   

 

 
 

Figure 8-11  Using Eq. (8-94), the phase noise for different values of n for constant C2 can be calculated. 
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Summary Results 
 
The analysis of the oscillator in the time domain has given us a design criteria to find the 

optimum value of 
2

1

C
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y =  with values for y + 1 or n ranging from 1.5 to 4.  For values 

above 3.5, the power is reduced significantly.   
 
Consistent with the previous chapters, we note  
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In the case of a large value of CP (CP>C1), X1 has to be inductive to compensate extra 
contributions of the device package capacitance to meet the desired value of C1!   
 
The following is a set of design guides to calculate the parameters of the oscillator.   
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2C is best be determined graphically from the noise plot.    
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The phase noise in dBc/Hz is shown as 
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The phase noise improves with the square of the loaded QL!  10% higher Q → 20% better 
phase noise! 
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The loaded Q of the resonator determines the minimum possible level of the oscillator 
phase noise for given bias voltage and oscillator frequency.  
 
To achieve close to this minimum phase noise level set by the loaded QL of the resonator, 
the optimum (rather, how large the value of the CIN can be) value of CIN is to be fixed. 
 
To achieve the best possible phase noise level, the feedback capacitors C1 and C2 should 
be made as large as possible, but still generate sufficient negative resistance for 
sustaining steady-state oscillation. 
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The negative resistance of the oscillator circuit is inversely proportional to the feedback 
capacitors. Therefore, the limit of the feedback capacitor value is determined by the 
minimum negative resistance for a loop gain greater than unity. 
 
From the phase noise equation discussed, the feedback capacitor C2 has more influence 
compared to C1.  The drive level and conduction angle of the Colpitts oscillator circuit is 
a strong function of C2.   
 
The time domain approach has provided us with the design guide for the key components 
of the oscillator; however, it did not include all the noise sources of the transistor.  By 
using the starting parameters, such as C1 and C2 and the bias point, as well as the 
information about the resonator and the transistor, a complete noise model/analysis will 
be shown in Section 8.5. 
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8.5 Phase Noise Analysis Based on the Feedback Model 
 
Up to here we have calculated both the large-signal drive condition, as well as the 
optimum choice of the feedback capacitance.  Now, we are going to consider the 
oscillator as a feedback loop with a noisy transistor, looking at all typical noise 
contributions.  Based on a fixed set of values of C1 and C2, we can now calculate the 
accurate phase-noise behavior of the oscillator and analyze the various noise 
contributions.  
 
First, the noisy bipolar transistor will be introduced.  Figure 8-12 shows the familiar 
hybrid-π transistor circuit and Figure 8-13 shows the equivalent circuit with the relevant 
noise sources included. 
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Figure 8-12   Grounded emitter bipolar transistor. 
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Figure 8-13  Hybrid-π configuration of the grounded bipolar transistor with noise sources. 
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The mean square value of the noise generators in Figure 8-13, in a narrow frequency 
offset ∆f, are given by 
 

fqIi bbn ∆= 22       (8-106) 
 

fqIi ccn ∆= 22       (8-107) 
 

fqIi cobcon ∆= 22      (8-108) 
 

fkTRv bbn ∆= 42      (8-109) 
  

fkTRv Ssn ∆= 42      (8-110) 
 
where Ib, Ic, and Icob are average DC currents over the ∆f noise bandwidth.  
 
The noise power spectral densities due to these noise sources are  
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where '

br  and Rs are base and source resistance and Zs is the complex source impedance. 
 
Figure 8-14 shows the feedback arrangement for the Colpitts oscillator with the noise 
sources. 
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Figure 8-14  Feedback arrangement for the Colpitts oscillator with the noise sources. 
 
The transistor is acting like a gain block.  The feedback network includes the load 
conductance and a small part of the output signal goes to the input of the bipolar 
transistor through the resonant  circuit.  The ABCD chain matrix will be used for the 
analysis.  
 
Figure 8-15 shows the linear representation of the Colpitts oscillator with the input white 
noise source in (ω). 
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Figure 8-15   Linear representation of feedback Colpitts oscillator with input white noise source in (ω).  
This is not consistent with Figure 8-14, but useful because all non-active components are now in the 
feedback network. 
 
The input noise power spectral density can be given as  
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and iiC is the noise correlation coefficient. 
 
The [ABCD] matrix of above oscillator circuit can be given as  
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where  
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The equivalent input noise voltage due to the input noise current, niI =1 , is 
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The input noise voltage )(ωnv will produce two narrowband (1 Hz) uncorrelated 
components in the frequency domain located at ω-ω0 and ω+ω0 as [ ] ωωωω ∆−= 0

)(nv  and 
[ ] ωωωω ∆+= 0

)(nv . 
 
In presence of the two uncorrelated components of the input noise voltage, [ ] ωωωω ∆−= 0
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)(nv , the peak carrier signal of amplitude Vc at frequency ω  = ω0  is 

modulated with a input phase noise signal )(ωϕ in
S∆ . 

 
The input phase noise spectral density at an offset of ∆ω  is 
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where inS  and 

in
S ϕ∆  are the input noise power and phase noise spectral density. 

 
Based on [70, 83] 
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The open loop gain is 
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We now perform the noise analysis of the Colpitts oscillator. 
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Individual Contribution of all Four Noise Sources  
 
The following contribute to the noise of the oscillator:  

• thermal noise associated with the loss resistance of the resonator 
• thermal noise associated with the base resistance of the transistor 
• shot noise associated with the base bias current, and  
• shot noise associated with the collector bias current.   

 
If we now use the oscillator circuit with a noisy resonator, we can calculate the total noise 
of the oscillator as shown in Figure 8-16. 
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Figure 8-16   The oscillator circuit with 2-port [ABCD] matrix, consistent with the approach of Figure 8-15. 
 
 
Noise Shaping Function of the Resonator 
 
For phase noise analysis, the oscillator is considered as a feedback system and a noise 
source is present in the input as shown in the Figure 8-17. 
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Figure 8-17  Feedback oscillator with noise source. 
 
 
Oscillator output phase noise is a function of   

• the amount of the source noise present at the input of the oscillator circuit, and 
• how much the feedback system rejects or amplifies various noise components. 

 
The unity-gain system closed loop transfer function is 
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For frequencies close to 0ωωω +∆= , the open loop transfer function is 
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The noise transfer function is 
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From the noise transfer function it appears that the noise component at 0ωωω +∆= is 

multiplied by the term 
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The broadband white noise is shaped by the resonator as seen in Figure 8-18. 
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Figure 8-18    Noise shaping in the oscillator. 
 

Therefore, the noise power spectral density can be explained as  
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for )](exp[)()( ωφωω jjjAjH =     (8-149) 
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Assume 0ωωω +∆= , 0ωω → and 1)( 0 →ωjA  then the above equation is reduced to 
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The open loop QL becomes  
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Non-Unity Gain  
 
For the non-unity gain feedback case where 
 

)()()( 21 ωωω jHjHjH =  (Eq. 8-1) 
 
it follows that 
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then the noise power is shaped by the transfer function as 
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For the lossy RLC resonator see Figure 8-19. 
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Figure 8-19  Noise response of the RLC resonator. 
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where PR is the equivalent loss resistance of the resonator. 
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Noise Transfer Function and Spectral Densities 
 
The noise transfer function for the relevant sources is: 
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noise transfer function of the thermal loss resistance of the resonator. 
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noise transfer function of the transistor’s base resistance noise. 
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noise transfer function of the transistor’s base current flicker noise.  
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noise transfer function of the transistor’s flicker noise. 
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noise transfer function of the collector current shot noise. 
 
where 
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)( 0ωinNFT , )( 0ω
bnVNFT , )( 0ω

bniNFT and )( 0ω
CniNFT  are the noise transfer functions as 

explained. 
 
Figure 8-16 showed the four noise sources of the oscillator circuit whereby the flicker 

noise current is added to the base current and their noise spectral density is 
m
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resistance of the resonator. 
 

bVbn KTrNSD 4][ = → noise spectral density of the thermal noise voltage from the base 
resistance. 
 

bibn qINSD 2][ = → noise spectral density of the shot noise current from the base current. 
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cicn qINSD 2][ = → noise spectral density of the shot noise current from the collector 

current. 
 
The phase noise contribution now is: 
 

[ ]2
00 )(][)( ωωω sourcenoisesourcenoise NFTNSDPN −−=∆+   (8-166) 

 

[ ]2
00 )(

4
)( ωωω inr

P
inr NF

R
KT

PN =∆+     (8-167) 

 
[ ]2

00 )(4)( ωωω VbnbVbn NFKTrPN =∆+    (8-168) 
 

[ ]2
00 )(2)( ωωω ibnBibn NFqIPN =∆+     (8-169) 

 

[ ]2
00 )()( ωωω ibn

m

AF
bf

ifn NF
f

IK
PN =∆+    (8-170) 

 
[ ]2

00 )(2)( ωωω icncicn NFqIPN =∆+     (8-171) 
 



 

148  

where )( 0 ωω ∆+PN is the phase noise at the offset frequency ω∆  from the carrier 
frequency 0ω  and  sourcenoiseNSD −][  is the noise spectral density of the noise sources.  The 
phase noise contribution is 
 

[ ]
2

0

0

2
00 2

1
2
14

)(
4

)(


















∆











==∆+

ω
ω

ω
ωωω

effP
inr

P
inr CjR

KT
NFT

R
KT

PN → phase noise 

contribution from the resonator tank. 
 

[ ]
2

0

2

212
00 2

1
2
1

4)(4)(














∆















 +
==∆+

ω
ω

ωωω
jQC

CC
KTrNFTKTrPN bVbnbVbn → phase noise 

contribution from  the base resistance. 
 

[ ]
2

0

021

22
00

1
2
1

2)(2)(


















∆



















+

==∆+
ω

ω
ω

ωωω
eff

bibnbibn QCjCC
C

qINFTqIPN → phase noise 

contribution from  the  base current. 
 

[ ] →


















∆



















+

==∆+

2

0

021

22
00 2

1
2
1

)()(
ω

ω
ω

ωωω
effm

AF
bf

ibn
m

AF
bf

ifn QCjCC
C

f

IK
NF

f

IK
PN phase 

noise contribution from  the  flicker noise of the transistor. 
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noise contribution from  the collector current. 
 
The total effect of all the four noise sources can be expressed as 
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where  
 
Kf  = Flicker noise constant  
 
AF = Flicker noise exponent. 
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Note: The effect of the loading of the Q of the resonator is calculated by the noise 
transfer function multiplied with the noise sources. 
 
The phase noise contribution from the different noise sources for the parallel tuned 
Colpitts oscillator circuit at ω∆  = 10 kHz .2π from the oscillator frequency 

0ω  = 1000 MHz .2π will now be computed: 
 
Circuit parameters: 
 
Base resistance of transistor rb = 6.14 ohm. 
 
Parallel loss resistance of the resonator RP  = 12000 ohm. 
 
Q of the resonator = 380 
 
Resonator inductance = 5nH 
 
Resonator capacitance = 4.7pF 
 
Collector current of the transistor Ic = 28mA 
 
Base current of the transistor Ib = 250uA. 
 
Flicker noise exponent AF = 2 
 
Flicker noise constant Kf = 1E-7 
 
Feedback factor n = 2.5. 
 
 



 

150  

Phase noise @ 10 KHz: 
 

HzdBcKHzPN inr /125)10( 0 −≈+ω   
 

HzdBcKHzPNVbn /148)10( 0 −≈+ω  
 

HzdBcKHzPN ifnibn /125)10( 0)( −≈++ ω  
 

HzdBcKHzPNicn /142)10( 0 −≈+ω  
 

Note:  The noise contribution from the resonator at this offset is the same as the flicker 
noise contribution from the transistor.  For low-Q cases, this can be identified as the 
flicker corner frequency.   
 
Phase noise @ 100Hz: 
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It appears that the flicker noise and the noise from the resonator are the limiting factors 
for the overall phase noise performance of the oscillator circuit. 
 
The dependence of the phase noise performance due to different noise sources present in 
the oscillator circuits are  
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Once the resonator Q is known (parallel loss resistance is fixed) then the only option left 
is to select a device having a low flicker noise.  The base resistance, current, and collector 
current add little to the performance!  Finally, optimization of the phase noise can be 
done by proper selection of the feedback capacitor under the constraints of the loop gain 
so that it maintains oscillation. 
 
The combined phase noise, a result of all the noise contributions, depends on the 
semiconductor, the resonator losses, and the feedback capacitors.  Figure 8-20 shows the 
simulated phase noise for a given set of semiconductor parameters and various levels of 
n.  While the values for n = 1.5 and 2 provide similar results and converge for frequencies 
more than 1 MHz off the carrier, the results for n = 3 also provides a much noisier 
condition, even at far-out frequencies.  The reason is the reduced output power and a 
heavier loading of the resonator.   
 

 
Figure 8-20   Phase noise as a function of feedback factor n. 

 
 
 

The next section shows a variety of test circuits, which were built and measured to 
validate the theory shown here. 
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9 Validation Circuits 
 
Section 7 developed the mathematical background for optimizing microwave oscillators.  
The next step is to validate the synthesis of the circuits.  The following circuits have been 
chosen for validation: 
 

• 1000 MHz bipolar transistor-based oscillator with ceramic resonator. 
• 4100 MHz bipolar transistor-based oscillator with transmission line 

resonators. 
• 2000 MHz GaAs FET-based oscillator with transmission line resonators. 

 
9.1 1000 MHz CRO 
 
Many applications require a very low noise microwave oscillator in the 1000 MHz 
region, and this is best accomplished with a ceramic resonator.  An operating Q in the 
vicinity of 500 is available in this material.  An oscillator using an NEC NE68830 
transistor has been selected because of its superior flicker noise.  The Colpitts oscillator 
uses an 8.2 Ω resistor between the emitter and the capacitive feedback.  Rather than take 
the RF signal at the collector, it is taken from a tap of the emitter inductor.  The collector 
circuit, using PNP transistors, has been designed to set the DC current.  The necessary 
equations for this DC bias are found in [88].   
 
Class-A common-emitter amplifiers are usually very sensitive to stray impedance in the 
emitter circuit.  Any small inductance in series with the emitter will cause instability; for 
this reason, the emitter needs to be grounded as directly as possible, and bias components 
in the emitter are generally undesirable.  In the schematic in Figure 9-1, Q1 is the RF 
amplifier, and Q2 provides its base current required for constant voltage difference across 
Rc. This constant voltage difference then ensures constant collector current. 
 
Diode D1 provides some measure of temperature compensation. Rb should be high in 
order not to affect base impedance, but not so high to cause Q2 to saturate over 
temperature and β1 variations.  Neglecting the base current of Q2, the design equations 
are  
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Figure 9-1   Active bias network for a common-emitter RF amplifier stage. 

 
Assuming that we are designing the bias circuit to provide a certain device bias current Ic 
and collector voltage Vc, select a convenient supply voltage A+ > Vc.  The component 
values are then supplied by the following equations: 
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Ic = desired collector current of Q1 (A) 

Vc= desired collector voltage of Q1 (V) 

Vd = diode, or base-emitter voltage drop, nominally 0.7 (V) 

A+ = chosen supply voltage (V) 

Ri = resistor values as shown in Figure 9-1 (Ω) 
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Id = bias current through R1, R2, and D1 (A) 

βmin – minimum beta of Q1 
 
The bias circuit shown has to be carefully bypassed at both high and low frequencies.  
There is one inversion from base to collector of Q1, and another inversion may be 
introduced by Lc matching components and stray capacitances, resulting in positive 
feedback around the loop at low frequencies.  Low ESR electrolytic or tantalum 
capacitors from the collector of Q2 to ground is usually adequate to ensure stability.  
 
The ceramic resonator is coupled loosely to the transistor with a capacitor of 0.9pF.  The 
resonator has a parallel capacitor of 0.6pF, which reduces the manufacturing tolerances of 
the resonator.  The tuning diode assembly, two diodes in parallel, is coupled to the 
resonator with 0.8pF.  The reason for using two diodes was that there was not one single 
diode available with the necessary capacitance and Q.  Figure 9-2 shows the schematic of 
the oscillator. 

 
 

Figure 9-2   1000 MHz ceramic resonator oscillator. 
 

It has been pointed out that the best operating condition will be the case where the most 
negative resistance occurs at the point of resonance to achieve the best phase noise.  This 
is shown in Figure 9-3.  The purple-colored curve starting below zero shows the 
imaginary current which resonates at 1000 MHz, while the green-colored curve shows 
the negative resistance.  Its maximum negative peak occurs at exactly 1000 MHz, as it 
should be. 
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Figure 9-3  Plot of the real and imaginary oscillator currents as a function of frequency. 

 
 

Figure 9-4 shows the measured phase noise of this oscillator.  The measurements were 
performed with the Aeroflex Euro Test system.  At 1 kHz the phase noise is 
approximately 95 dBc/Hz and at 10 kHz it is approximately 124 dBc/Hz.  This is a 
30 dB/decade slope, which is triggered by the flicker corner frequency of the transistor.  
From 10 kHz to 100 kHz, the slope is 20 dB/decade with a phase noise of –145.2 dBc/Hz 
at 100 kHz.  At 1 MHz off the carrier, it is –160 dBc/Hz. 
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Figure 9-4  Measured phase noise of the 1000 MHz ceramic resonator oscillator. 

 
 
Because of the narrow tuning range and the loose coupling of the tuning diode, the noise 
contribution of the diode is negligible.   
 
This circuit has been designed using the synthesis procedure and also has been analyzed 
with the harmonic-balance simulator Microwave Harmonica from Ansoft Corporation.  
Figure 9-5 shows the predicted performance of the phase noise.  The actual circuit 
arrangement is shown in Figure 9-6.  The ceramic resonator can be spotted easily. 
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Figure 9-5   Predicted phase noise of the CRO at 1 GHz shown in Figure 9-2. 

 
 

 
 

Figure 9-6   Photograph of the 1 GHZ CRO of the schematic shown in Figure 9-2. 
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9.2 4100 MHz Oscillator with Transmission Line Resonators 
 
For less demanding applications, it is possible to design oscillators using transmission 
line resonators.  Transmission line resonators were discussed in Section 5.  Their Q 
depends on the material and implementation of the resonator.  Figure 9-7 shows the 
circuit of the oscillator.  While the previous example was a Colpitts parallel resonant 
circuit, this circuit operates in series resonant mode.   The NPN transistor NE68830 has 
parasitic inductance in the emitter, base, and collector lines.  For the purpose of accurate 
modeling, TEE and cross-junction models were used, as well as transmission lines where 
applicable.  The DC stabilization circuit uses the same technique as shown in Figure 9-2.  
This time the RF power is taken from the collector and uses a 10 dB attenuator to 
minimize frequency pulling.  The ground connections for the capacitors are done using 
via holes.  A via hole is the electrical equivalent of a small inductor. 
 

 
 

Figure 9-7   Circuit diagram of the 4.1 GHz oscillator. 
  
 
The phase noise of this oscillator was simulated using the values of the synthesis 
program.  Figure 9-8 shows the predicted phase noise. 
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Figure 9-8   Predicted phase noise of the 4.1 GHz oscillator. 
 
 

The output power of this oscillator is 6.8 dBm.  This oscillator was built and measured.  
Figure 9-9 shows the printed circuit board of the oscillator. 
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Figure 9-9   Printed circuit board of the 4.1 GHz oscillator shown in Figure 9-8. 
 
 
Because of the pad-like microstrips, the simulation needs to be done very carefully, and 
the soldering of the component is also very critical.  This frequency range makes the 
assembly very difficult because it is not high enough for an RFIC and still needs to be 
done on a printed circuit board.  The measured phase noise is shown in Figure 9-10.  It 
agrees well with the predicted phase noise. At 100 kHz the difference is about 3 dB.  The 
same is valid at 10 kHz.  At 1 kHz there is a larger difference.  The flicker corner 
frequency of the actual device is different than the simulation.   
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Figure 9-10   Measured phase noise of the 4.1 GHz oscillator. 

 
 
9.3 2000 MHz GaAs FET-Based Oscillator 
 
Low cost applications are frequently implemented as an RFIC.  For further validation, a  
GaAs FET-based 2000 MHz Colpitts oscillator was designed and built.  Figure 9-11 
shows the circuit diagram of the oscillator.  It uses a combination of transmission lines 
and rectangular inductors as resonators.  The inductor in the middle of the schematic in 
Figure 9-11, connected to a via hole, is needed as a DC return. If a tuning diode is 
connected to the capacitor on the left of the schematic in Figure 9-11, then a DC control 
voltage can be applied, and the center inductor becomes and RF choke. The output is 
taken from the source.  An additional external DC decoupling capacitor will be needed 
because of the DC coupling.  The transistor and the circuit were constructed using the 
TriQuint GaAs Foundry and the transistor was optimized for the DC current.  Figure 9-12 
shows the predicted phase noise of this oscillator. 
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Figure 9-11   Circuit diagram of the 2 GHz GaAs FET oscillator. 
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Figure 9-12   Predicted phase noise of the oscillator shown in Figure 9-11.   The measured values were 
100 dBc/Hz at 100 kHz and 120 dBc/Hz at 1 MHz.  There is a deviation of about 2 dB compared to 
simulation. 

 
It is interesting to examine the load line of this oscillator, which is shown in Figure 9-13.  
This circuit is operated in a fairly linear range.   

 
Figure 9-13   Shows the DC-IV and the load line for the GaAs FET oscillator. 
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Figure 9-14 shows the layout of the 2 GHz GaAs FET oscillator.  Its output power is 
1.8 dBm. 
 
 

 
 

 
 

Figure 9-14   Layout of the 2 GHz GaAs FET oscillator. 
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10 Conclusions and Future Possibilities 
 
Conclusions 
 
The purpose of this work was to determine how to design optimal microwave oscillators.  
In doing so, some basic oscillator circuits were used rather than voltage controlled 
oscillators, as the phase noise of the tuning diode then masks the oscillation noise.  As a 
result of this work, a set of good design guides and accurate equations were found.  They 
cover the large-signal operation of the transistor, particularly the drive level for best 
output power.  It was found that the output power remains constant over a fairly wide 
range of drive levels, which shortens the conducting angle of the transistor.  A further 
reduction of the conducting angle results in large voltage swings and makes the oscillator 
very noisy.  The following is specific for the Colpitts oscillator, but similar relationships 
can be found for all other oscillator configurations.  The normalized drive level can be 
between 8 to 20 depending upon the application.  It was further confirmed that the Q 
largely determines the best phase noise for a given device.  For medium to low Q values 

n = )1(
2

1

C
C

+  varies between 2 and 4. The absolute value of C1 is determined by the loop 

gain and for safety reasons, a loop gain reserve factor of 2 is recommended. 
 
The Colpitts oscillator shows good phase noise performance up to very high frequencies.  
When a wide tuning range is required, the series resonant circuit is typically favored at 
the expense of lower phase noise.  This is due to the fact that transistor parasitics no 
longer allow for obtaining the optimum C1 and C2 values.   Because of these parasitics, it 
also may be necessary to replace C2 with an inductor to adjust to the needed values. 
 
For wireless applications, push-pull CMOS oscillators are state-of-the-art.  Here the 
flicker corner frequency and the loaded Q strongly determine the performance.  Based on 
the push-pull arrangement of a non-Colpitts oscillator, C1 and C2 are automatically equal.  
This means that n=2, and this is not the best phase noise condition.  However, recently 
published push-pull Colpitts oscillators avoid this problem [119]. 
 
Besides finding a repeatable synthesis procedure, a set of analytical equations were 
derived that predict the phase noise of the oscillators even in the presence of parasitics.  
These equations also consider the loading of the Q based on the oscillator circuit and the 
flicker noise.  The selection of a transistor for best performance needs to be divided into 
two areas.  If the parasitics do not play a large role, then it is a good choice to take the 
largest device possible.  Because of flicker noise, it should be operated at low current and 
should have a low flicker-noise contribution.  If the device is too high in its operating 
frequency, there is typically a penalty in the flicker noise, and parasitics (fingers of the 
transistor layout) degrade the noise performance.  All the important circuits were built, 
measured, and analyzed in Microwave Harmonica.  Their design was based on these 
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analytic equations.  All three approaches showed excellent agreement.  At 10 kHz a phase 
noise of –124 dBc/Hz were both measured and predicted.  The Leeson equation set, the 
time-domain approach, and the loop-gain approach, as well as the harmonic-balance 
calculation, all agreed within 1 dB of accuracy. 
 
Future Possibilities 
 
As indicated, the areas of most concern in oscillators are the flicker frequency effects, the 
Q, and the phase noise, which is a function of both, as well as the supply voltage.  As the 
industry migrates to lower voltages, better devices need to be developed which show 
good performance at these low voltages.  Since most designs are not used as an oscillator 
at a fixed frequency, but as a voltage-controlled oscillator with a wide tuning range, this 
topic needs to be thoroughly analyzed and good solutions need to be found.  My 
extension to the Leeson formula clearly shows that after a certain tuning sensitivity, the 
tuning diode dominates the noise regardless of Q and flicker effects.  Possible solutions 
here are multi-resonator oscillators, binary-switched capacitances, and inductors to 
minimize the influence of the tuning diode.  This will be an important area of research.    
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11 Abbreviations and Symbols 
 
 
Symbol    Description 
 
LTV    Linear time variant 
 
NLTV    Nonlinear time variant 
 
LTIV    Linear time invariant 
 
Gm    Large-signal transconductance 
 
gm    Small-signal transconductance 
   
an(x)    Fourier coefficient 
 
In(x)    Modified Bessel function of order n 
 
Ie(t)    Emitter current 
 
Ic(t)    Collector current 
 
Icob    Collector reverse current   
 

)(totalnV     Total noise voltage 
 

snV         Noise due to source 
 

)(networknV    Noise due to network    
 
Yg     Generator admittance 

Yopt    Optimum noise admittance 

Fmin    Minimum achievable noise figure 

Rn    Noise resistance 

][ yC     Y-parameter noise correlation matrix 

[ ]AC     ABCD Correlation Matrix 

Ycor     Correlation factor  
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fqIi bbn ∆= 22    Mean square value of noise due to base current 
 

fqIi ccn ∆= 22    Mean square value of noise due to collector current 
 

fqIi cobcon ∆= 22   Mean square value of noise due to reverse collector current 
 

fkTRv bbn ∆= 42   Mean square value of noise voltage due to base resistance 
 

mcn KTgiS 2)( =   Noise power spectral densities due to collector current 
 

β
m

bn

KTg
iS

2
)( =   Noise power spectral densities due to base current 

 
bbn KTRvS 4)( =   Noise power spectral densities due to base resistance 

 
ssn KTRvS 4)( =   Noise power spectral densities due to source resistance 

 
fPkTgi md ∆= 42   Mean square value of noise due to drain current 

 

f
g

RwCkT
i

m

gs
g ∆=

2
2 )(4

  Mean square value of noise due to gate current 

Hzi
kTg

P d
m

/
4

1 2








=    FET noise coefficient 

 

Hzi
CkTw

g
R g

gs

m /
4

2
22











=   FET noise coefficient 

 
















−=

•

][ 22
gd

dg

ii

ii
jC    FET noise coefficient 

P      0.67 for JFETs and  1.2 for MESFETs 
 
R      0.2 for JFETs and 0.4 for MESFETs 
 
C     0.4 for JFETs and 0.6-0.9 for MESFETs 
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 Zs     Complex source impedance 
 

0
02

2 1
1

α
α 








−+=

bf
f

a    Modified factor 

 
X    Drive-Level 
 
(kT/q)x   Drive-Voltage 
 
2[I1(x)/I0(x)]   Fundamental component of current 
 
[I2(x)/I1(x)]   Second harmonic component of current 
 
ϕ    Conduction angle 

 
n    Transformation factor 
 
nopt    Optimum transformation ratio 
 
RP    Parallel loss resistance 
 
QL    Loaded quality factor 
 
f0    Center frequency 
 
fc    Flicker corner frequency 
 
fm    Frequency offset 
 
Psav    Average power at oscillator output 
 
K0    Oscillator voltage gain 
 

2

2

LO

L

i

i
F =    Noise factor 

 
NF    Noise Figure 
  
£(fm)             Ratio of sideband power in a 1 Hz bandwidth at fm  
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EB, EH    Vector of harmonic-balance (HB) errors 
 
E    Vector of real and imaginary parts of all HB errors 
 
XB, XH   Vector of state variable (SV) harmonics 
 
JB, JH    Vector of forcing terms   
 
δXB, δXH   Perturbation of the circuit state 
 
M    Jacobian matrix of the HB errors  
 
δω0(ω)   Phasor of the pseudo-sinusoidal components 
 
Nk(ω)    Noise power spectral density 
 
Ck(ω)    Normalized correlation coefficient  
 

)(ωpJ     Side-band noise sources 
 

)(ωpU     Side-band noise sources 
  
Ik

ss    Noise power spectral density 
 
S∆θ(ω)    Power spectral density of the input phase error 
 
θd    Peak phase deviation 
 
eN(t)    Noise signal voltage 
 
RN(t)    Time variant negative resistance 
 
k    Boltzman’s constant (1.38E-23 J/K) 
 
kT      4.1 × 10−21 at 300 K0 (room temperature) 
 
R     Equivalent noise resistance of tuning diode 
 
G     Compressed power gain of the loop amplifier 
 
TF(jω)   Closed loop transfer function 
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H(jω)    Open loop transfer function 
 

2)(ωδϕ ck                 PM noise at kth harmonic 

 
2)(ωδϕmk    PM noise due to contribution of modulation 

 
2)(ωδ ckA     AM noise to carrier ratio at kth harmonic 

 
*)()( ωδωδ kck AΦ    PM-AM correlation coefficient for the kth harmonic 

 
)()( ωω ⊗

HH JJ     Correlation matrix 

 
⊗

FT     Conjugate-transpose 
 

AkT     Row-matrix  
 
TF      Frequency transfer matrix 
 

)( 0ωkYR    Transadmittance matrix 
 

)2exp( ss
k

SS
k jI ϕ          kth harmonic of the steady-state current through the load 

 
)(, ω•

−kkC    Correlation coefficient of the upper and lower sidebands 
 
m(t)    Modulating signal  
 
Kp    Phase sensitivity 
 

mf
f∆

=β          Modulation index of the modulating signal 

 
SNR              Signal to noise ratio  
 
ASSB    Sideband amplitude of a phase modulation  
 
C0      Coefficient of Fourier series, 0th order of the ISF 
 
∆f     Noise bandwidth 
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w1/f     1/f noise corner frequency of the device/transistor 
  
qmax    Maximum charge on the capacitors in the resonator 
 
NFTinr(ω)   Noise transfer function due to resonator loss resistance 
 
NFTvbn(ω)   Noise transfer function due to transistor base resistance 
 
NFTibn(ω)   Noise transfer function due to the transistor base current 
 
NFTifn(ω)   Noise transfer function due to flicker noise  
 
NFTicnω)   Noise transfer function due to collector current 
 
Kf    Flicker noise constant 
 
AF    Flicker noise exponent 
 
σ(t)    Complex envelope of the frequency modulated signal 
 
Γ(rms)    Impulse sensitivity function 
 
EMF    Electromotive  force  
 
β +    Large-signal current gain 
 
Y11

+    Large-signal input admittance 
 
Y21

+    Large-signal transconductance 
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13 Appendices 
 
Appendix A - Design of an Oscillator Using Large Signal S-Parameters 
 
Figure A-1 is a numerical calculation of a 3000 MHz oscillator based on the parallel 
feedback case using large-signal S-parameters.  This example is of particular interest 
because it requires an inductor instead of the familiar capacitor, C2, between base and 
emitter.  The circuit as such is a Colpitts oscillator. 

 
Figure A-1   A 3000 MHz oscillator using a BFP520 transistor operating at 2V and 20mA.  In this case, the 
capacitor C2 needs to be replaced by an inductor L3 which tunes out the collector emitter capacitance to 
achieve the optimum value.  The 1nF on the left is a DC separation capacitor.  This case is optimized for 
output power. 
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The measured large-signal Y-parameter data (Ic=20mA, Vce=2V) @ 3000MHz are:  
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The optimum values of feedback element are calculated from the given expression of 
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The optimum values of the real and imaginary part of the output admittance are  
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where *
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Figure A-2   Shows the real and imaginary currents for oscillation.  The reactive current crosses the zero 
line at 3120 MHz.  This is close, but not exactly at the point of most negative resistance current.  The 
reason for the shift of 120 MHz is due to the use of small-signal analysis rather than the large-signal 
analysis. 

negative current, 
responsible for 
negative resistance 

reactive current, 
responsible for 
resonance at the 
zero crossing 
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Figure A-2 shows the simulated response of the oscillator circuit having resonance at 3120 MHz 
or 5% error. The little variation in resonant frequency may be due to the frequency dependent 
packaged parameters, but it is a good starting value for tuning and optimization for the best 
phase noise and output power. The best phase noise at a given power output is basically 
dependent upon the ratio and absolute value of the feedback capacitors, which in turn depends 
upon the optimum drive-level.  
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Appendix B - Design Example for Large Signal Design Based on Bessel Functions 
 

Frequency = 1000 MHz. 
Power output = 5 mW 
Load = 500Ω 

 
Figure B-1 shows the schematic of the 1 GHz oscillator as described in Section 9.  The 
output termination is 500Ω.   
 

 
 

Figure B-1   The 1000 MHz oscillator chosen for the design example. 
 
 
Step 1: 
 
The 1000 MHz oscillator, using the bipolar transistor BFP520 (Infineon), is designed 
based on analytical equations and is later verified with results.  Based on the output 
power requirement and harmonics at a given load, the drive level is fixed.  
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The normalized drive level of x = 15 is chosen to allow adequate drive level to sustain 
oscillation and yet, not to produce excessive harmonic content.  For drive level x = 15, 
the fundamental peak current is given from a graph/table as 

      
dcIlfundamentaI 932.1)(1 =      (B-1) 

 
1I  is the fundamental current specified by the output power needed for the designated 

load. 
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Step 2: 
 
To avoid saturation in the transistor, select an emitter resistor Re to maintain a sufficiently 
small emitter signal voltage of approximately half the base-emitter drop. The DC emitter 
voltage also provides a reasonable offset to the variations in the base-emitter bias voltage.  
Re is set to 160Ω. Using the common equation for biasing, the expression for the voltage 
at the base is given as 
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β is assumed to be around 100 and Vbe is approximately 0.8V.Bias resistor R1 and R2 is 
given as 
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Step 3: 
 
The large-signal transconductance is determined as 
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Step 4: 
 
The value of n-factor is calculated from the equation above as  
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The quadratic equation above is reduced to 
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The higher value of the transformation factor, n, is selected as n = 3.   
 
The values of C1 and C2 are calculated as  
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The ratio of the capacitor C1 to C2 is 2.  The absolute values of the capacitors are 
determined from the loop-gain condition of the oscillator as  
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The quality factor of the inductor is assumed 10 at 1000 MHz, a low Q case.   
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The value of inductor is obtained as 
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The value of the capacitor is determined as  
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Step 5: 
 
The value of the coupling capacitor, Cs, is assumed to be 10pF and the effect of Cs on the 
series reactance of the inductor L must be is considered.  Therefore, the inductor value is 
adjusted to 
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The base–lead inductance of the BFP520 is approximately 0.4nh, and after correcting 
this, the effective value of the inductor is 6.2nH. 
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Step 6: 
 
 The harmonic content can be calculated from the table of Bessel functions as 
 

dcdcdcdc IIIIIIIIx 887.0;272.1;742.1;932.115 4321 ====⇒=   (B-40) 
 
The parallel tank circuit at the output of the oscillator is designed to filter out higher 
harmonics.  
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The analytically calculated values are in good agreement with the simulated and 
published results.  Figure B-2 shows both the base-emitter voltage, which looks 
sinusoidal, and the collector current under the given operating condition.   As previously 
shown, due to the harmonic contents, there is a certain amount of ringing as well as 
negative collector current.  This is due with the tuned collector circuit.   
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Figure B-2   Shows the base voltage and collector current of the oscillator in Figure B-1. 
 
 
Figure B-3 shows the predicted phase noise as a function of the normalized drive level 
using values of x between the levels of 4 and 18.   The phase noise is not the optimized 
phase noise for this configuration because the best phase noise can be achieved by 
adjusting the proper ratio and absolute values of the feedback capacitors at a given drive 
level and required output power. 
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Figure B-3   Shows the predicted phase noise of the circuit shown in Figure B-1 with different normalized 
drive levels.   
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Appendix C - Design Example for Best Phase Noise and Good Output Power 
 
Figure C-1 shows the parallel-tuned Colpitts oscillator circuit, which has to be designed 
with the following specifications.  The unit was also built and measured.  It uses a 
ceramic resonator and its equivalent circuit is shown. 
 
Requirements: 

• output power requirement: 13 dBm  
• operating frequency: 1000 MHz 
• load: 50 Ω 
• phase noise –124 dBc/Hz @10KHz 

 
Design Steps 
 
Step 1:  
 
Calculation of the operating point for a fixed, normalized drive of x = 20 (high output 
power). 
  
Based on output power requirement, the following is calculated. 
 
The oscillator output voltage at the fundamental frequency is 
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The fundamental current is 
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The DC operating point is calculated based on the normalized drive level x = 20. The 
expression for the emitter dc current can be given in terms of the Bessel function with 
respect to the drive level is 
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Figure C-1   Schematic of the 1000 MHz oscillator. 
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Figure C-2   Predicted output power of the oscillator.  
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Figure C-3   Predicted phase noise of the oscillator. 
 
 
For the normalized drive level x = 20, the output emitter current at the fundamental 
frequency can be given as 
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Figure C-4 shows the oscillator circuit configuration in which DC and RF current 
distribution is shown and divided into its components.  
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Figure C-4  Current distribution in the oscillator circuit. 
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For this application, the NE68830 was selected.   
 
Step 2:  
 
Biasing circuit 
 
For the best phase noise close-in, a DC/AC feedback circuit is incorporated which 
provides the desired operating DC condition [84]:  
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IE=28.3mA 
  
VCE=5.5V, Supply Voltage Vcc=8V 
  
β=120 
 
IB≈0.23mA 
 
Step 3:  
 
Calculation of the large-signal transconductance. 
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Step 4:  
 
Loop Gain. 
 
The loop gain is 
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As earlier derived, the loop gain should be 2.1 to have good starting conditions! 
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Step 5:  
 
Calculation of the feedback capacitor ratio. 
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Step 6:  
 
Calculation of absolute values of feedback capacitor. 
 
 
The expression of inZ (Looking in to the base of the transistor) can be given as 
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where  
 
CP = (CBEPKG +Contribution from layout)=1.1pF 
 
  LP=(LB + LBX +Contribution from layout)=2.2nH. 
 
 
The expression for the negative resistance nR  is 
 
 

])2.2()107.0()912(1[)1( 22222
21

2 nHE
R

LY
R

R n

P

n
neq ∗∗∗+

=
+

=
πω

  (C-15) 

 
 

65.3
n

neq

R
R ≈       (C-16) 

 



 

 C-8

21
2

2021
2

21

)912(
107.0

CCECC
Y

R
x

n ∗
=








−=

=

+

πω
    (C-17) 

 
 

nR  is the negative resistance without parasitics ),( PP LC . 
 
For sustained oscillation → neqR  ≥ 2RPEQ  ≅ 101.4 Ohm 
 

OhmRn 3714.10165.3 ≈∗=      (C-18) 
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pFC 3.31 =       (C-21) 

 
pFC 2.22 =       (C-22) 

 
 
Step 7:  
 
Calculation of the coupling capacitor re. 
 
The expression for the coupling capacitor is 
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pFC c 4.0→       (C-24) 
 
 
Figure C-5 shows the transistor in the package parameters for the calculation of the 
oscillator frequency and loop gain. 
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Figure C-5  NE68830 with package parasitics.  Q is the intrinsic bipolar transistor. 
 

Tables C-1a and C-1b show NE68830 nonlinear parameters and package parameters 
which were taken from the NEC data sheets. 
 
 Table C-1a   Nonlinear parameters 

Parameters Q Parameters Q 
IS 3.8E-16 MJC 0.48 
BF 135.7 XCJC 0.56 
NF 1 CJS 0 

VAF 28 VJS 0.75 
IKF 0.6 MJS 0 
NE 1.49 TF 11E-12 
BR 12.3 XTF 0.36 
NR 1.1 VTF 0.65 

VAR 3.5 ITF 0.61 
IKR 0.06 PTF 50 
ISC 3.5E-16 TR 32E-12 
NC 1.62 EG 1.11 
RE 0.4 XTB 0 
RB 6.14 XTI 3 

RBM 3.5 KF 0 
IRB 0.001 AF 1 
RC 4.2 VJE 0.71 
CJE 0.79E-12 MJE 0.38 
CJC 0.549E-12 VJC 0.65 
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 Table C-1b   Package parameters of NE68830 

Parameters NE68830 
CCB 0.24E-12 
CCE 0.27E-12 
LB 0.5E-9 
LE 0.86E-9 

CCBPKG 0.08E-12 
CCEPKG 0.04E-12 
CBEPKG 0.04E-12 

LBX 0.2E-9 
LCX 0.1E-9 
LEX 0.2E-9 

 
 
Design Calculations  

 
1.  Frequency of Oscillation  
 
Frequency of the oscillation is  
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with  
 
L = 5nH (Inductance of the parallel resonator circuit) 

C1
*= 2.2pF 

C1= C1
*+CP  

CP=1.1Pf (CBEPKG + Contribution from layout) 

C2 = 2.2pF 

Cc = 0.4pF 

C =4.7pF 

RP=12000 (Measured) 

380=
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R

Q P
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2. Calculation of the Phase Noise 
 
The noise equation which was determined in Section 8.4, Eq. (8-94), and which contains 
resonator noise, shot noise, and flicker noise, can now be used to graphically determine 
the best phase noise as a function of n.  Figure C-6 shows a plot of this curve.  It gives the 
best number of n to be 2.5, which is consistent with the calculation done for the large-
signal condition.  Eq. (C-12) gives the same result. 

 
Figure C-6   The phase noise contribution of the lossy resonator at 10KHz offset. 

 
 
The calculated phase noise at 10 KHz off the carrier is –124 dBc/Hz, which agrees with 
the measurements within 1 dB.  The other values are –140 dBc/Hz at 100 kHz offset and 
–160 dBc/Hz at 1 MHz offset.   
 
This circuit is shown in Section 9.1, Figure 9-2.  The actual measured phase noise is 
shown in Figure 9-4, and the simulation is shown in Figure 9-5.  Considering that 
Eq. (8-94) only contains shot and flicker noise, as well as resonator noise, it has been 
proven that this by itself is a very accurate formula for practical use.  Figure 9-5 has been 
generated from using Ansoft Designer, which includes all noise sources and is based on 
the harmonic balance principle.   
 
The important conclusion found in Section 8 is that for the first time we have a complete 
mathematical synthesis procedure for best phase noise that covers both flicker noise and 
white noise for the oscillator.  In the past, most publications have referenced an oscillator 
built with many shortcuts and then the author found that the measured results agree with 
the expectations.  A complete synthesis approach has not appeared previously.  
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